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Abstract

Learning of effective problem information from the search space explored along an Evolu-

tionary Multi-objective Optimization (EMO) algorithm’s run, and its utilization to improve the

convergence of subsequent solutions, have presented important research directions. This con-

cept, referred to as online innovization, attempts to extract the inter-variable relationships from

the intermediate solutions of an EMO run; and utilize them to repair the subsequent offspring

solutions for better convergence. While this concept is promising, its generality is marred by the

fact that the relationship structures need to be specified a priori.

Inspired by the notion of online innovization, this thesis aims to broaden its scope by factoring

in both convergence and diversity; doing away with the need to specify the relationship structures

a priori; and avoiding any extra solution evaluations compared to the base EMO algorithm. To

this effect, this thesis utilizes the framework of Reference-vector based EMO (RV-EMO) algo-

rithms and proposes three machine learning based operators, including: (i) IP2 – Innovized

Progress operator 2 – for enhancement of convergence, (ii) IP3 – Innovized Progress operator 3

– for enhancement of diversity, and (iii) UIP – Unified Innovized Progress – for simultaneous en-

hancement of convergence and diversity, in an adaptive manner. In principle, these operators rely

on intermittently learning the efficient search directions based on inter-generational and/or intra-

generational solutions of an RV-EMO run, and utilizing these for advancement and/or creation of

a fraction of the offspring in the same generation, without requiring any additional solution eval-

uations. The efficacy of the UIP operator has been established on a wide range of test problems,

with characteristics including, convergence-hardness, diversity-hardness, bias, multi-modality,

and multi- and many-objectives. This thesis’s distinctive contribution lies in setting the founda-

tions for machine learning based evolutionary optimization. The encouraging proof-of-concept

results make it worthy of further research.
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of RV-EMO-IP3 vis-à-vis RV-EMO-IP2 and base RV-EMO. The offspring so-

lutions created using natural variation operators QV do not impose any explicit

preference for either convergence or diversity. . . . . . . . . . . . . . . . . . . . 51

4.3 Depicting the need for objective-wise mapping, towards training-dataset con-

struction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Symbolic depiction of the neighborhood of a solution vis-à-vis adjacency of RVs. 55
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Chapter 1

Introduction

Optimization is an iterative process of arriving at one or more optimal solution(s), depending on

the number of objectives (M ). In the case of M = 1 or single-objective optimization problems

(SOPs), the goal is usually to find a unique global optimum. However, in the case of M ≥ 2

or multi-objective optimization problems (MOPs), the notion of a unique global optimum does

not exist, and the goal extends to finding a set of best trade-off solutions. These best trade-off

solutions are referred to as Pareto optimal (PO) solutions, where one cannot be said better than

the other [Deb, 2001]. The above goals can be fulfilled by using either point-based or population-

based algorithms. However, in MOPs, the population-based algorithms are more suited since a

set of PO solutions can be obtained through a single algorithmic run.

Population-based algorithms, commonly referred to as Evolutionary Algorithms (EAs), con-

stitute a class of nature-inspired algorithms that have demonstrated efficient search capabilities

in tackling optimization problems, especially MOPs [Coello Coello et al., 2020]. In the case

of EAs, the goal is to evolve a finite set of random solutions (sized N ) over several iterations,

referred to as generations, towards the global optimum (in the case of SOPs) or the PO solutions

(in case of MOPs). In any generation, EAs rely on: creation of a new offspring population using

the natural variation operators (QV, sized N ), from the parent population (P , sized N ); merging

of the parent and offspring populations; and selection of the best N solutions, that constitute the

parent population for the next generation. This process is repeated in each generation until the

pre-specified termination criterion is met, and the final obtained population is reported. Notably,

different selection criteria can be used in EAs to tackle SOPs and MOPs, as required suitably.

Considering the scope of this thesis, the subsequent discussion only encircles MOPs.

MOPs are characterized by two or more conflicting objectives. An MOP, involving M objec-

1
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tives and n variables can be represented as:

Minimize F (X) ≡ {f1(X), f2(X), . . . , fM(X)}

Subject to X ≡ {x1, x2, . . . , xn}T ∈ Ω
(1.1)

Here, Ω ⊆ Rn signifies the feasible variable space (X-space), implying that any solution in

Ω satisfies the constraints in the problem, if any. For each solution X ∈ Ω ⊆ Rn, there exists an

F (X) ≡ {f1(X), . . . , fM(X)} ∈ RM . In that, as per [Deb, 2001]:

• given two solutions X ∈ Ω and Y ∈ Ω, X is said to dominate Y if X is not worse than Y

in any objective, and X is better than Y in at least one objective.

• a solution X∗ ∈ Ω is called a PO solution if there is no X ∈ Ω that dominates X∗. The

set of all PO solutions is called the Pareto set (PS), and its corresponding representation

in the objective space (F -space) constitutes the efficient set or loosely known as the Pareto

front, given by PF = {F (X) ∈ RM | X ∈ PS}.

The extension of EAs towards tackling MOPs is referred to as Evolutionary Multi-objective

Optimization (EMO), as detailed in the following section.

1.1 EMO algorithms

In the past two decades, EMO has gained significant attention in performing a variety of search

and optimization tasks over several domains, including but not limited to aerodynamic design,

molecular structure of drugs, medical decision making, supply chain management, land use plan-

ning, document summarization, and data clustering [Anand et al., 2007, Saini et al., 2021, Stewart

et al., 2008].

EMO algorithms extend the goal of EAs to finding a set of solutions that approximates well

the true PF for a given MOP, in terms of convergence (proximity of the true PF ), and diversity

(coverage across the PF with a reasonably uniform distribution). This notion of convergence

and diversity is symbolically depicted in Figure 1.1.

Once a set of well-converged and well-diverse PO solutions has been obtained, the user (or the

decision-maker) can utilize some decision-making techniques to arrive at a single useful solution

from the set of PO solutions [Deb, 2001, Rachmawati and Srinivasan, 2009].

One of the significant extensions to EMO algorithms includes reference vector (RV) based

EMO algorithms, referred to as RV-EMO algorithms here onward. These algorithms are often
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Figure 1.1. A symbolic depiction of convergence and diversity in the PO solutions, in F -space.

also referred to as decomposition-based algorithms [Zhang and Li, 2007]. The basic idea in these

algorithms is to decompose a given MOP into several scalar optimization subproblems (one per

RV) in the F -space and solve these simultaneously to arrive at a reasonable PF -approximation.

Figure 1.2. A symbolic depiction of a decomposed F -space.

The above decomposition in the F -space is symbolically depicted in Figure 1.2. In that, seven

RVs (R1–R7) are shown that pass through the true PF . Finding a well-converged solution for

each RV, would facilitate a reasonably diverse PF -approximation. It is critical to note that a

movement along the RVs in the F -space would correspond to a change in the convergence level.

In contrast, a movement across the RVs in the F -space would correspond to a change in the

context of diversity.
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In the above background, two key aspects that shed light on this thesis’s motivation are high-

lighted below. While the following discussion in the context of EMO algorithms is generic, the

same is also applicable to the RV-EMO algorithms (a subset of EMO algorithms).

1.1.1 Existing Innovized Repair Operator in EMO

It is intuitive to think that the PO solutions may possess some special properties, referred to

as rules, that set them apart from non-optimal solutions or random solutions. For example,

in a mathematically well-behaved problem with convex, continuous, and differentiable func-

tions, the PO solutions must adhere to the Karush-Kuhn-Tucker necessary conditions of Pareto-

optimality [Bertsekas et al., 2003].

The task of extracting these rules from a set of PO solutions was referred to as innovization

in [Deb, 2003]. It was later exemplified as an offline task with utility on a number of real-world

engineering problems [Deb and Srinivasan, 2006, Ng et al., 2009]. In that, the first (of the two)

step was to obtain a set of near PO solutions, which can be achieved using any EMO algorithm.

The second step was to extract the said rules in the form of explicit mathematical relationships

among the decision variables, objectives, and constraints, that are common to the majority of the

solutions. These mathematical relationships, extracted through the two-step innovization task,

were referred to as the innovized relationships.

While the innovized relationships are interpretable and help reveal problem-features, some

studies [Deb and Datta, 2012, Myburgh and Deb, 2018] went a step ahead and utilized these

relationships (obtained from some initial EMO runs) towards obtaining faster convergence in the

subsequent EMO runs. This demonstrated practical utility, especially when an optimization task

needs to be performed repeatedly with minor changes in the problem formulation, such as the

scheduling tasks. Motivated by these successful attempts, [Gaur and Deb, 2016, 2017] made

the first attempt in extracting and utilizing the innovized relationships within a single EMO run,

referred to as online innovization. In that, the extracted relationships were used by means of an

innovized repair operator, to selectively repair a fraction of the offspring created by the natural

variation operators. While a better convergence was reported on some test problems, the above

method needed an a priori specification of the structure of innovized relationships, thus limiting

its generality on problems with unknown characteristics.

More recently, a unified automated innovization algorithm was proposed [Mittal et al., 2020]
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that could extract useful relationships from problems with variables of both continuous and dis-

crete nature. Further, to reduce the computational time of extracting innovized relationships,

increasing its utility in online innovization, a computationally efficient innovization algorithm

was proposed [Garg et al., 2020]. However, the limitation discussed above in the context of

existing innovization studies, holds for these propositions too.

1.1.2 Offspring Improvement vis-à-vis Dual goals in EMO

Conventionally most EMO algorithms pursue the dual goals of convergence and diversity, through

the selection procedure executed at the end of each generation, where the N best solutions are

selected for the next generation from the combined parent and offspring populations. Notably,

a well-diversified set of solutions has no practical relevance if the solutions have not converged

to the PF . Similarly, well-converged solutions that occupy only a small part of the PF is not

desirable. Hence, managing the delicate convergence-diversity balance becomes critical for the

efficacy of any EMO algorithm.

The above plausibly explains why in most EMO algorithms, offspring creation is left to the

natural variation operators, and is not explicitly customized to pursue convergence and/or diver-

sity. In a departure from this trend, a recent study [Seada et al., 2019] provisions for: (i) creating

better-converged offspring solutions in poorly converged regions of the obtained front, to effect

better convergence, and (ii) creating offspring solutions in empty regions of the obtained front, to

effect better diversity, with the help of a gradient-based local search operator. This approach is

promising as it does not favour convergence over diversity, or vice-versa. However, an associated

pitfall is that using a local search operator requires additional solution evaluations, over and above

the default solution evaluations of the underlying EMO algorithm. In a more recent study [Tian

et al., 2021], while the offspring solutions are created using the natural variation operators only,

an indirect attempt to emphasize convergence and diversity has been made through a judicious

choice of the parent solutions for mating. In that: (i) to emphasize convergence, both parents

with good convergence degrees are selected, (ii) to emphasize diversity, both parents with good

diversity degrees are selected, and (iii) otherwise, a parent with good convergence and another

with good diversity degree, are selected.
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1.2 Contribution and Structure of the Thesis

This thesis is inspired by the notion of online innovization, and aims to broaden its scope by

factoring in both convergence and diversity; doing away with the need to specify the relationship

structures, a priori; and avoiding any additional solution evaluations compared to the base EMO

algorithm.

Towards it, this thesis recognizes that in the existing online innovization studies, it is im-

plicitly assumed that the inter-variable relationships extracted within the scope of pre-specified

relationship structures, at any intermediate EMO generation; and propagated through subsequent

offspring repair, help induce better convergence. Hence, any endeavour to do away with a pri-

ori specification of the relationship structures, would require alternative criteria that could guide

improvement in convergence and diversity. This thesis further recognizes that if the scope of

online innovization could be narrowed down to RV-EMO algorithms, then the underlying RVs

could provide the aspired criteria. In that, even though the RVs are sampled in the F -space, and

their direct representations are not available in the X-space, they can still provide the criteria for

improvement in convergence and diversity. The rationale for this claim is rooted in the recog-

nition that: (i) the solutions associated with the RVs in the F -space, have their representations

in the X-space, (ii) mapping of inter-generational solutions in the F -space (from previous to the

current generation, implying, improvement in F -space) can facilitate mapping of the solutions’

underlying X vectors, and (iii) such mappings in X-space learnt using machine learning (ML)

methods, can be treated as efficient search trajectories that could be utilized for improvement

in convergence. Similarly, mapping of intra-generational solutions in the F -space, can facilitate

learning of efficient search trajectories in the X-space that could be utilized to improve diversity.

In the premise set above, this thesis utilizes the framework of RV-EMO algorithms, and pro-

poses three ML based Innovized Progress (IP) operators, including:

1. IP2 (Innovized Progress 2)1: for convergence enhancement. It relies on learning the effi-

cient search directions (in X-space), based on mapping of inter-generational solutions in

F -space, along the reference vectors; and utilizing the learning in the same generation, to

produce pro-convergence offspring, namely, QIP2 (in X-space).

1As a prelude to this thesis, an Innovized Progress operator, namely IP [Mittal et al., 2021b] was developed.

Subsequently, its improved version in IP2 [Mittal et al., 2021a] was developed. Since both cater to a similar goal,

the former has been omitted from this thesis.
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2. IP3 (Innovized Progress 3): for diversity enhancement. It relies on learning the efficient

search directions (in X-space), based on mapping of intra-generational solutions in F -

space, across the reference vectors; and utilizing the learning in the same generation, to

produce pro-diversity offspring, namely, QIP3 (in X-space).

3. UIP (Unified Innovized Progress): for convergence and diversity enhancement. It relies

on invoking either or both of the IP2 and IP3 operators in the same generation, to produce

both pro-convergence and pro-diversity offspring, referred to as QUIP. In that, if either of

IP2 or IP3 are invoked, then QUIP ≡ QIP2 or QUIP ≡ QIP3, as applicable. However, if both

IP2 and IP3 are invoked, then QUIP ≡ QIP2 ∪QIP3.

The above operators, when integrated into an RV-EMO algorithm, are referred to as RV-

EMO-IP2, RV-EMO-IP3 and RV-EMO-UIP, respectively. Their efficacy vis-à-vis the base EMO

algorithm is bound to be influenced by the following questions:

• In any given generation: what proportion (P , in percentage) of the total offspring solutions

(N ) should be fetched through the innovized progress operators. In other words, what

fraction of N should QIP2 or QIP3 or QUIP be?

• Across all the generations: how frequently should the innovized progress operators be

invoked. In other words, if tIP2freq and tIP3freq represent2 the number of generations between two

successive invocations of IP2 and IP3, respectively, then what should the values of tIP2freq and

tIP3freq be?

This thesis postulates that the answers to the above questions, ought to cater to the dual

considerations of:

• Convergence-diversity balance: conventionally, the natural variation operators (for in-

stance, crossover and mutation, in the context of genetic algorithms) utilize the principle of

guided randomness to produce the offspring solutions QV, without any explicit considera-

tion for their convergence or diversity characteristics. Such convergence-diversity-neutral

offspring, alongside the parent solutions, serve as input to the selection operator, which

pursues EMO’s dual goals of convergence and diversity. Hence, it is imperative that in

2Here, tUIP
freq is not included, since the invocation of UIP is directly linked to the invocation of either or both of

IP2 and IP3, governed by tIP2
freq and tIP3

freq.
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any generation, the offspring resulting through the innovized progress operators are not

over-skewed in favour of either convergence or diversity.

• Risk-rewards tradeoff: notably, the proposed innovized progress operators rely on learn-

ing the efficient search directions (in X-space), based on mapping of inter- and intra-

generational solutions in F -space. Clearly, there is a possibility that such a learning may

not be meaningful due to multiple factors, including the non-linearity in the given problem;

training data comprising of intermediate generation solutions which may not be represen-

tative of the PF ; and choice of ML methods, etc. Hence, it is imperative that the degree

of reliance on the innovized progress operators is moderated, considering the risk-rewards

tradeoff associated with the accuracy of the underlying ML models.

Table 1.1. Evaluation of RV-EMO-IP2/IP3/UIP vis-à-vis key considerations of convergence-diversity

balance and risk-rewards tradeoff associated with reliance on ML based operators.

Algorithm
Nature of Progressed

Offspring

Convergence-diversity

balance calls for?

Risk-rewards tradeoff

to be factored?

RV-EMO-IP2 Pro-convergence: QIP2 A dominant share of

offspring QV that are

convergence-diversity-

neutral

Yes

RV-EMO-IP3 Pro-diversity: QIP3

RV-EMO-UIP

If only IP2 is invoked Pro-convergence: QIP2

If only IP3 is invoked Pro-diversity: QIP3

If both IP2 and

IP3 are invoked

Both Pro-convergence and

Pro-diversity: QIP2 ∪QIP3
No intervention

In this background, Table 1.1 evaluates each scenario associated with RV-EMO-IP2, RV-

EMO-IP3, and RV-EMO-UIP vis-à-vis the dual considerations cited above. It is rather apparent

that the risk-rewards tradeoff associated with reliance on ML-based operators is the overarching

consideration. Also, in the case of RV-EMO-UIP where both IP2 and IP3 may get invoked in the

same generation, the convergence-diversity balance could be implicit, since the IP2 based pro-

convergence offspring can balance the IP3 based pro-diversity offspring. In all other instances,

the IP2 based convergence-enhancement or IP3 based diversity-enhancement, needs to be bal-

anced, by provisioning for a dominant share of offspring produced by natural variation operators.

This thesis further postulates that both the key considerations of convergence-diversity bal-

ance and risk-rewards tradeoff could be addressed by ensuring that over the entire run of RV-

EMO-IP2/IP3/UIP (accounting for all the generations till termination), the share of convergence-
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diversity-neutral QV outweighs the contributions of pro-convergence QIP2 and/or pro-diversity

QIP3. While the above could be ensured in multiple ways, this thesis adopts the following set-

tings to realize the same:

1. in the case of RV-EMO-IP2: the proportion of offspring created using IP2 (P IP2) is kept

as 50% in each generation where IP2 is invoked; and tIP2freq ≥ 1. The justification is: (i)

in those generations where IP2 is invoked, QV shall still contribute 50% of N , and (ii)

in generations where IP2 is not invoked owing to tIP2freq ≥ 1, QV shall contribute 100% of

N . Hence, the overall contribution of QV across all the generations is guaranteed to be

dominant.

2. in the case of RV-EMO-IP3: the proportion of offspring creating using IP3 (P IP3) is kept

as 50% in each generation where IP3 is invoked; and tIP3freq ≥ 1. The justification is: (i)

in those generations where IP3 is invoked, QV shall still contribute 50% of N , and (ii)

in generations where IP3 is not invoked owing to tIP3freq ≥ 1, QV shall contribute 100% of

N . Hence, the overall contribution of QV across all the generations is guaranteed to be

dominant.

3. in the case of RV-EMO-UIP: both P IP2 and P IP3 are kept as 50% in each generation; and

tIP2freq ≥ 2 and tIP3freq ≥ 2. This justification is as follows:

• in generations where only IP2 or IP3 is invoked, QV shall still contribute 50% of N ;

and when neither of them is invoked owing to tIP2freq ≥ 2 and tIP3freq ≥ 2, QV shall con-

tribute 100% of N . Hence, the overall contribution of QV across all the generations

is guaranteed to be dominant.

• in generations where both IP2 and IP3 are invoked, QV shall be 0% of N . However,

tIP2freq ≥ 2 and tIP3freq ≥ 2 shall enforce that at least in the next generation neither IP2 nor

IP3 is invoked, and QV shall contribute 100% of N . Hence, the overall contribution

of QV across all the generations is guaranteed to be at least 50%.

The above discussion endorses that under all possible scenarios the share of QV remains

dominant compared to QIP2 and/or QIP3. This is symbolically endorsed in Figure 1.3. In that,

QV is separated from others through a fuzzy boundary. This could be attributed to the fact

that a priori quantification of QV’s exact share for an entire run of RV-EMO-IP2/IP3/UIP is not
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possible, since tIP2freq and tIP3freq are adapted on-the-fly based on the survival rate of QIP2 and QIP3,

respectively.

Source of offspring 

solutions that are 

subjected to selection

Linkage of offspring solutions with the dual 

goals in EMO

Convergence Diversity

RV-EMO 𝑄V

RV-EMO-IP2 𝑄IP2 𝑄V

RV-EMO-IP3 𝑄V 𝑄IP3

RV-EMO-UIP 𝑄IP2 𝑄V 𝑄IP3

Figure 1.3. Symbolic depiction of the degree of operators’ contribution to convergence and diversity,

over an entire run of RV-EMO-IP2, RV-EMO-IP3, and RV-EMO-UIP, respectively. The offspring created

through natural variation operators QV are represented by a different color since they do not impose any

explicit preference for either convergence or diversity.

In the wake of this thesis’s core contributions summarized above, the chapter-wise layout is

highlighted below. In that, while Chapters 1 and 2 set the context, the core contributions are

detailed in Chapters 3–5.

• Chapter 1 introduces multi-objective optimization problems; presents an overview of how

EMO algorithms operate in principle; and briefly highlights two key themes that have set

the motivation for this thesis.

• Chapter 2 provides a literature review of the related works. In that, ML-based enhance-

ments in EMO algorithms are reviewed first, followed by other enhancements, referred to

as “non-ML-based”.

• Chapter 3 proposes the IP2 operator, designed for convergence-enhancement in the RV-

EMO algorithms. Following the description of the IP2 operator, its computational com-

plexity analysis is presented, followed by proof-of-concept results and discussions on

convergence-hard multi-objective problems.

• Chapter 4 proposes the IP3 operator, designed for diversity-enhancement in RV-EMO

algorithms. Following the description of the IP3 operator, its computational complexity
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analysis is presented, followed by proof-of-concept results and discussions on diversity-

hard multi-objective problems.

• Chapter 5 marks the culmination of the stated aim of this thesis. In that, the IP2 and

IP3 operators are combined with relevant adaptations, leading to the UIP operator. Its

efficacy has been established on a wide range of test problems, with characteristics in-

cluding, convergence-hardness, diversity-hardness, bias, multi-modality, and multi- and

many-objectives.

• Chapter 6 concludes the thesis. In that, the contributions of the thesis have been summa-

rized, and some of the future research directions have been highlighted.
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Chapter 2

Literature Review

Since the early 1990s, many efficient EMO algorithms have been proposed. For solving complex

MOPs, the EMO algorithms purely relying on the natural variation operators might not produce

an efficient search [Li et al., 2013, Pelikan et al., 2002]. To effect a better search, several en-

hancements to these EMO algorithms have been proposed [Coello and Lamont, 2004, Deb and

Myburgh, 2017]. Considering the scope of this thesis, these enhancements have been broadly

classified as: (i) ML-based enhancements, and (ii) non-ML-based enhancements, as discussed in

this chapter. In addition, some other developments, specific to RV-EMO algorithms, have been

presented. Finally, some key research gaps are identified in wake of which, the aim and objectives

of this thesis are defined.

2.1 ML-based Enhancements in EMO

In EMO algorithms, several ML-based enhancements have been proposed: (i) through surrogate-

modelling, (ii) through model-based offspring creation, (iii) through efficient mutation, and (iv)

through innovized repair operator. These enhancements have been discussed, in detail, in the

following subsections.

2.1.1 Through Surrogate Modelling

ML methods have often been used in the EMO domain for surrogate-modeling. The overall idea

is to learn the variable-objective relationships locally, using an ML method (called a surrogate

model), and evolve the solutions on the basis of approximate function values (through the sur-

rogate model). A repeated use of this procedure during an optimization run may require fewer

actual function evaluations in order to converge. Despite the high computational complexity of

building surrogate models, this approach could be useful in real-world problems where the actual

13
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function evaluation can be computationally very expensive [Bhattacharjee et al., 2017, Chugh

et al., 2018, Dutta and Gandomi, 2020].

While the overarching idea of ML-based surrogate modelling in EMO is highlighted above, it

is incomplete without taking constraint function evaluation into account, which might be compu-

tationally expensive as well. Given this, the function and constraint evaluations are collectively

referred to as solution evaluations in this thesis. Several approaches exist, where each objective

function and constraint function is modelled independently from the already evaluated solutions,

using different ML methods, such as Gaussian random-field models [Emmerich et al., 2006];

Gaussian regression models [El-Beltagy et al., 1999]; Kriging [Jones, 2001, Sinha et al., 2018];

radial basis functions [Mullur and Messac, 2006]; random forests [Wang and Jin, 2020]; response

surfaces [Lian and Liou, 2005]; and support vector regression [Inapakurthi and Mitra, 2022].

In a slight departure, [Deb et al., 2019] discussed the possibility of building a single collective

surrogate model for all objective functions using scalarizing functions, such as weighted sum or

Tchebychev [Miettinen, 1999]; and separately building a single surrogate model for all constraint

functions using a combined normalized constraint violation function [Deb and Datta, 2012]. In a

balancing act, [Hussein et al., 2018] proposed a framework that could adaptively switch between

independent and collective surrogate models.

Besides facilitating the approximated solution evaluations, surrogate models have also been

used to perform other tasks in EMO, including local search [Koçer and Uymaz, 2021, Zhou

et al., 2021] and efficient offspring-creation [Li et al., 2020, Mallipeddi and Lee, 2012]. While

the notion of local search in EMO has been discussed in detail under the “non-ML-based en-

hancements” category, later in this chapter, the surrogate model based local search is discussed

next, followed by the surrogate based efficient offspring creation.

Performing local search in the intermediate generations of an EMO run, requires additional

solution evaluations beyond the usual offspring evaluations in each generation. To reduce its

burden, some studies use a surrogate model to perform the local search using approximate solu-

tion evaluations [Lima et al., 2006, 2009]. These methods combine a structural hill-climber for

local search with BOA [Pelican et al., 1999], in which the search neighborhoods are defined by

the inter-variable dependencies learned by the probabilistic model of BOA. Despite these efforts,

the choice between using a surrogate model for approximate solution evaluations and using ac-

tual solution evaluations was inconclusive, since different dynamics were observed for different

problems [Lima et al., 2006].
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Some methods have also used surrogate models for efficient offspring creation. In that,

[Mallipeddi and Lee, 2012] relies on generating multiple offspring from the same set of parents

(in each generation) by the use of different mating strategies. This, in general, may necessitate

extra solution (offspring) evaluations compared to the conventional scenario where only one/two

offspring are generated from a set of parents. To limit the additional computational cost, the lat-

ter’s fitness is approximated using a surrogate model instead of the potentially expensive actual

solution evaluations. This challenge of extra solution evaluations is also manifested in another

similar method [Li et al., 2020], where besides the parents in any generation, some extra solu-

tions which could serve as potent parents are created. Again, the evaluation of the fitness of such

solutions is based on surrogate models instead of the potentially expensive actual evaluations.

2.1.2 Through Model-based Offspring Sampling

EMO algorithms with model-based offspring sampling started with the development of Estima-

tion of Distribution Algorithms (EDAs) in 1996 [Miuhlenbein and Paaß, 1996]. EDAs were

designed to directly extract the global search space statistical information from the current search

and build a probabilistic model of elite solutions, using ML methods such as Bayesian networks

or decision trees. This model would then be used to create new offspring solutions (through sam-

pling) for subsequent generation(s). EDAs, such as BOA [Pelikan et al., 1999], MONEDA [Martı́

et al., 2008], RM-MEDA [Zhang et al., 2008], EDA-VNS [Du et al., 2021] and HMOBEDA

[Martins et al., 2021], have shown a potentially distinctive advantage of exploiting the inter-

variable dependencies in creating new offspring solutions. One of the significant extensions to

EDAs include FEG-EDA [Xu et al., 2014], that: (i) maps the original search space to a modified

search space, (ii) samples new offspring solutions in the modified search space, and (iii) revert

them back to the original search space, in an attempt to capture the inter-variable dependen-

cies better. Reportedly, there are two major issues with model-based sampling, that include the

choice of: (a) selection strategy for the elite solutions and (b) building strategy for the probability

distribution model [Chen et al., 2006].

Given that sampling through these probabilistic models embeds the captured inter-variable de-

pendencies into the offspring solutions, their advantage is tangible when there are inter-variable

dependencies present in the PS of a given MOP. However, there are other MOPs where indepen-

dent mating through EMO’s natural variation operators produces a more efficient search [Mittal
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et al., 2021b]. In this background, several EMO algorithms have been proposed that create off-

spring partially through the natural variation operators and partially through model-based sam-

pling, that include M-MOEA [Zhou et al., 2005], Hybrid [Zhou et al., 2006], IM-MOEA [Cheng

et al., 2015] and GMOEA [He et al., 2021].

2.1.3 Through Efficient Mutation

In EMO algorithms, mutation is one of the natural variation operators, that is primarily used as a

mechanism for maintaining diversity in the population [Holland, 1975]. Although the mutation

operator alone might not constitute an effective search, it plays a crucial role along with a suitable

recombination operator, towards making the overall search efficient [Goldberg, 1989]. Tradition-

ally, the mutation operators modify one or more variables of a given solution with a probability,

while the extent of that modification is controlled through an index. To avoid the a priori fixation

of these parameters, which may deter an efficient search, some studies have opted for integrating

reinforcement learning (RL) into EMO algorithms. One of such studies include NSGA-RL [Bora

et al., 2019], where suitable mutation parameters are learnt on-the-fly using RL, individually for

each variable, towards a more efficient search. Another such study is RL-NSGA-II [Ren et al.,

2019], where the RL algorithm attempts to learn and decide which variable(s) of a given solution

should be modified, while controlling the extent of that modification through a randomized input.

Apart from the above, some studies have used learning automaton (LA), a variant of RL,

towards guiding the mutation in a more comprehensive manner [Dai et al., 2016, Zhao and Zhang,

2020]. In that, [Dai et al., 2016] learns two probabilities individually for each variable, that

correspond to the direction of modification for that variable (towards the lower or upper bound)

and the extent of that modification. Alternatively, [Zhao and Zhang, 2020] exploits the RV-based

structure of the underlying RV-EMO algorithm, by learning the choice of mutation operator (out

of three), individually for each RV.

Unlike the above approaches that attempted learn and adapt the mutation operation, towards

a more efficient search, a recent study [Wang et al., 2021] attempted to learn and adapt the search

space itself, using principle component analysis (PCA). In that, the parent solutions are first

mapped to a transformed (reduced) search space, built through the application of PCA, and the

new offspring solutions are generated through mutation in the transformed search space. Finally,

the new offspring solutions are mapped back to the original search space before their evaluation.
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Notably, the PCA-assisted mutation is applied only after a fixed proportion of the maximum

allowed generations (maxgen).

2.1.4 Through Innovized Repair Operator

The existing innovized repair (IR) operator [Gaur and Deb, 2016, 2017] briefly introduced in

Section 1.1.1, is further detailed here. In EMO-IR, EMO algorithm integrated with the IR opera-

tor, no learning or repair is executed till 33% of maxgen have passed. In each of the subsequent

generations, the mathematical relationships are learnt from the non-dominated solutions of the

parent population. The structure of these mathematical relationships is restricted to power laws,

for example, xb11 x
b2
2 = c, where {x1, x2} are variables and {b1, b2, c} are parameters to be learnt.

However, these power laws are first converted into linear equations using log-linear modeling,

and are then learnt using multi-variate linear regression. If the quality of the learnt relationships

is better than a pre-specified threshold value, they are used towards repairing a fraction of the

offspring created originally using the natural variation operators of the underlying EMO algo-

rithm. The said repair operation is executed by forcing the offspring’s variables to conform to

these learnt relationships.

2.2 Non-ML-based Enhancements in EMO

While the ML-based enhancements in EMO algorithms, discussed above, have shown promise

towards building efficient EMO algorithms, local search (a non-ML-based enhancement) has

proven its effectiveness in solving MOPs with both continuous and discrete search spaces in

conjunction with EMO algorithms [Kumar and Singh, 2007, Land and Belew, 1998]. Some such

studies, that incorporated a local search into an EMO algorithm, are reviewed below.

Through Local Search

Local search has often been used in conjunction with the EMO algorithms, towards their perfor-

mance enhancement [Jaskiewicz, 2002, Lara et al., 2010, Murata et al., 2002]. This conjunction

has been realized in several ways, including: (i) the use of local search after the EMO run has ter-

minated, and (ii) the use of local search in each generation of the EMO run [Goel and Deb, 2002].

Implementing local search in an EMO algorithm is not straightforward, as the local search usually

means searching for the best solution in a local neighbourhood with respect to a single objective
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function or the fitness function. A number of suggestions have been made in the literature for the

fitness function using aggregation functions, including the weighted sum of objectives [Ishibuchi

and Narukawa, 2004], achievement scalarizing function (ASF) [Sindhya et al., 2008], and biased

weighted sum (BWS) [H. Seada and Deb, 2017].

While the above studies employed a local search to primarily emphasize on convergence

locally, a recent study implemented a local search to locally emphasize on both convergence and

diversity through the use of hypervolume measure as the fitness function [Zhou et al., 2021].

Another study [Seada et al., 2019] attempted to tackle both convergence and diversity through

the use of local search. It involved invocations of local search in three different manners for

achieving different goals of EMO, including: (i) local search using BWS seeking convergence

of extreme solutions, (ii) local search using ASF seeking solutions on empty RVs, and (iii) local

search using ASF seeking a better convergence for poorly converged solutions.

Notably, implementing local search in EMO requires additional solution evaluations, over

and above the default solution evaluations of the underlying EMO algorithm. To reduce the

computational burden of these additional solution evaluations, a prominent method is to use a

surrogate model and deploy the local search based on approximate solution evaluations. Such

approaches have been discussed earlier in Section 2.1.1

2.3 Past studies specific to RV-EMO algorithms

The idea of using RVs to assist the search in EMO algorithms was first proposed in [Zhang and

Li, 2007]. In that, the basic idea was to decompose an MOP into several scalar optimization

problems, and then search for an optimal solution for each subproblem. While searching the best

solution for each subproblem, different scalarizing functions could be used, such as, weighted

sum (WS), ASF or penalty-based boundary intersection (PBI). The final step was to find the

non-dominated solution set from the obtained optimal solutions (one per subproblem), that could

offer a reasonable PF -approximation. Based on the above, RV-EMO algorithms have often

been referred to as decomposition based algorithms in the literature. Moreover, RVs are often

referred to as weight vectors, reference directions or preference vectors. Several extensions to

these algorithms have been proposed, including: improved scalarizing functions, modified natural

variation operators, enhanced replacement procedures, inclusion of dominance principles and

adaptation of RVs.
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Improved scalarizing functions: the original decomposition study [Zhang and Li, 2007] in-

vestigated three scalarizing functions, namely, WS, ASF and PBI. These traditional scalarizing

functions have known shortcomings, especially while dealing with a higher number of objectives

and a limited population size, as it results in a high improvement region for each RV [Sato, 2014,

Wang et al., 2016a]. To address this, several other scalarizing functions have been proposed,

including, adaptive penalty scheme (APS) [Yang et al., 2017], subproblem-based penalty scheme

(SPS) [Yang et al., 2017], angle penalized distance (APD) [Cheng et al., 2016] and localized

weighted sum (LWS) [Wang et al., 2018].

Further, it is known that no single scalarizing function can provide the best performance in

all MOPs, which makes the identification of an appropriate function a crucial task [Trivedi et al.,

2017]. Towards address this, some adaptive strategies that focus on identifying an appropriate

scalarizing function for each RV (or subproblem) have been proposed, including, MOEA/D-

SS [Ishibuchi et al., 2010], MOEA/D-AS [Ishibuchi et al., 2009] and MOEA/D-PaS [Wang et al.,

2016b]. A relatively recent approach has explored the use of ML for choosing appropriate scalar-

izing functions on-the-fly [Wu et al., 2019]. In that, the current non-dominated solutions are

considered as the training data, and Gaussian process regression is used to learn the characteris-

tics of the estimated PF . Based on this learnt model, the scalarizing functions are selected and

the corresponding subproblems are formulated.

Modified natural variation operators: several studies have been performed with the goal of

modifying the commonly used natural variation operators, i.e., SBX crossover and polynomial

mutation. For instance, the use of differential evolution (DE) as the crossover operator, has

demonstrated excellent performance in handling MOPs with complicated PS shapes [Li and

Zhang, 2009]. A later study then investigated the influence of using different DE schemes as

crossover operator [Huang and Li, 2010]. However, it is well known that no single set of natural

variation operators can outperform all other combinations of natural variation operators, across

all MOPs. Towards this, the rewards-based adaptive operator selection (AOS) method has often

been used to determine the rate of application of these operators on-the-fly [Li et al., 2014a]. AOS

has been integrated into several algorithms, including, MOEA/D-FRRMAB [Li et al., 2014a],

MOEA/D-UCB [Gonçalves et al., 2015] and mMOEA/D [Shim et al., 2012].

Enhanced replacement procedures: in all RV-EMO algorithms, it is imperative to examine the

interrelationship between the solutions and the RVs, depending on their respective locations in

the F -space. While, an intuitive idea is to find the solution offering the best scalarizing function



20 2. Literature Review

value for each given RV and select it, some recent studies have argued that such an approach may

be biased towards convergence [Li et al., 2014b, 2015b]. In that, a stable matching model has

been used that: (a) ranks each solution for each RV (or subproblem), to promote convergence,

and (b) also, ranks each RV (or subproblem) for each solution, to promote diversity. Hence, the

proposed model is capable of linking each RV to one single solution, such that a balance between

convergence and diversity can be maintained [Li et al., 2014b].

Inclusion of dominance principles: some studies have extended the idea of decomposition

based algorithms to the dominance based algorithms, resulting into a new category. In this thesis,

such algorithms are considered a part of RV-EMO algorithms. In these algorithms, the basic idea

is to rely on one or more dominance principles (instead of scalarizing functions) to emphasize

convergence, while utilizing the RV-based architecture to emphasize diversity. Such algorithms

include: NSGA-III [Deb and Jain, 2014, Jain and Deb, 2014], θ-DEA [Yuan et al., 2016] and

MOEA/DD [Li et al., 2015a].

Adaptation of RVs: reportedly, the performance of RV-EMO algorithms strongly depends on

the PF shape [Ishibuchi et al., 2017]. In that, the performance of known RV-EMO algorithms,

including NSGA-III and θ-DEA, is shown to deteriorate on MOPs with irregular PF shapes. To

address this, several approaches for adapting the RVs on-the-fly have been proposed [Ma et al.,

2020], including, MOGLS [Ishibuchi and Murata, 1998], RVEA∗ [Cheng et al., 2016], and GP-

A-NSGA-III [Masood et al., 2017]. Some ML-assisted approaches that focus on RV adaptation

are discussed below.

Some approaches have focused on using the Gaussian process regression to learn the popu-

lation distribution in the intermediate generations of an algorithmic run [Wu et al., 2017, 2019].

Once the model is learnt, several points can be sampled randomly, out of which the inferior sam-

ples (with large prediction variances) can be deleted and a subset from the remaining ones can

be selected based on diversity in F -space. The notable limitations of such approaches include:

(a) each objective function must be continuous, which hampers their applicability in real-world

problems, and (b) they can be easily misguided by the poorly converged solutions from the inter-

mediate generations [Ma et al., 2020]. Moreover, a recent approach employs incremental learning

of RVs to simultaneously: (a) generate denser RVs close to the valid RVs (RVs with at least one

solutions associated with them), and (b) eliminate the invalid RVs (RVs that have no solutions

associated with them, across several consecutive generations) [Ge et al., 2019].
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2.4 Research Gaps

In wake of the ML-based and non-ML-based enhancements in EMO algorithms reviewed in this

chapter, some key research gaps have been highlighted below.

• Lack of exploitation of the inter-generational evolution trend towards achieving a better

convergence: EMO algorithms are known to follow the Markov property, i.e., the evolution

of the population is dependent only on the current state, not on the past history. Even though

the RL-based efficient mutation approaches learn through good mutation operations, across

the generations, the inter-generational evolution trend is only partially captured since the

mutation is only one of the EMO’s natural variation operators.

• Lack of approaches focusing on diversity improvement without requiring additional solu-

tion evaluations: notably, some approaches have explicitly focussed on diversity improve-

ment [Seada et al., 2019, Zhou et al., 2021]. However, these approaches involve the imple-

mentation of a local search, that requires additional solutions over and above the default

offspring evaluations of the base EMO algorithm.

• Lack of clarity on determining an appropriate timing to initiate learning and to terminate

the EMO run: several studies support the claim that it might not be efficient to learn since

the first generation of the EMO run, and rather should initiate learning at an intermediate

generation [Gaur and Deb, 2017, Wang et al., 2021]. In that, [Gaur and Deb, 2017] sug-

gested to initiate learning after 33% of maxgen generations have passed, whereas [Wang

et al., 2021] introduced a new parameter r ∈ [0, 1] and suggested to initiate learning af-

ter r ×maxgen generations have passed. While such an a priori fixation of r might be a

non-trivial task, it points to a graver question of how to decide maxgen a priori, especially

while solving real-world problems with unknown characteristics.

2.5 Aim and Objectives of the Thesis

In the wake of the literature review and research gaps highlighted above, the aim of this the-

sis is to develop a generic and practicable ML-based framework to assist in the performance

enhancement of RV-EMO algorithms. This aim is through the following objectives:

1. development of a ML based framework, that invokes:
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(a) an innovized progress operator (IP2) to utilize the inter-generational solutions along

an RV-EMO run, for convergence enhancement.

(b) an innovized progress operator (IP3) to utilize the intra-generational solutions along

an RV-EMO run, for diversity enhancement.

(c) a unified innovized progress operator (UIP) to utilize inter-generational and intra-

generational solutions along an RV-EMO run, for convergence and diversity enhance-

ment, conjunctly.

2. embedding generality in the proposed framework by avoiding adhoc decisions on critical

aspects, including, when to initiate learning, and how frequently to learn.

3. embedding practicability in the proposed framework by avoiding any extra solution evalu-

ations, compared to the base RV-EMO (without ML assistance).

Given the aim and objectives cited above, it is important to acknowledge that the performance

enhancements offered by the IP2, IP3, or the UIP operator could be interpreted, in terms of:

1. Improvement in the quality of PF -approximation: this is realistic in situations where the

base RV-EMO may fail to approximate the PF well, owing to the difficulty of the under-

lying problem. In such a scenario, it may be fair to expect that the proposed operators help

improve the quality of PF -approximation.

2. Improvement in the speed of PF -approximation: this is realistic in situations where the

underlying problem is not difficult enough, and the base RV-EMO run sufficiently long, is

able to approximate the PF well. In such a scenario, the proposed operators could only

speed-up the PF -approximation.



Chapter 3

IP2 Operator for Convergence Enhancement

It has been highlighted in Chapter 1 that the RV-EMO architecture provides the scope for map-

ping of inter-generational solutions along the RVs in F -space, enabling a mapping of their un-

derlying X-vectors, and eventually learning of efficient search trajectories in X-space. In this

background, this chapter presents the IP2 operator, designed for convergence-enhancement in

RV-EMO algorithms. It includes an ML-based approach that: (a) maps the solutions from the

earlier generations of an RV-EMO run to the selected best solutions till current generation in F -

space, along the RVs; (b) learns the directional improvements (in X-space) through the mapping

using an ML model; and (c) utilizes the learnt ML model in the same generation to advance a pro-

portion P IP2 of the offspring (in X-space), originally created using natural variation operators.

This advancement, towards a better convergence, is referred to as progression. Notably, this cre-

ation of offspring solutions using natural variation operators and their subsequent advancement,

has been referred to as the production of pro-convergence offspring QIP2, earlier in Chapter 1.

In that, the justification for producing only P IP2 = 50% pro-convergence offspring (through

advancement) in a particular generation has also been provided, which guarantees a dominant

contribution of QV across all generations of an RV-EMO-IP2 run, as symbolically depicted in

Figure 3.1.

The remainder of this chapter is organized as follows: Section 3.1 describes the proposed

IP2 operator, followed by an outline of its integration with NSGA-III, an RV-EMO algorithm, in

Section 3.2. Section 3.3 discussed the computational complexity of the IP2 operator, followed by

a discussion on the experimental setup towards demonstrating the efficacy of the IP2 operator in

Section 3.4. Finally, the results and related discussions are presented in Section 3.5.

23
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Source of offspring 

solutions that are 
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Linkage of offspring solutions with the dual 

goals in EMO

Convergence Diversity

RV-EMO 𝑄V

RV-EMO-IP2 𝑄IP2 𝑄V

Figure 3.1. Symbolic depiction of the degree of IP2 operator’s contribution to convergence and diversity,

over an entire run of RV-EMO-IP2. The offspring created through natural variation operators QV do not

impose any explicit preference for either convergence or diversity.

3.1 Proposed IP2 Operator for Convergence Enhancement

It has been highlighted above that the IP2 operator attempts to capture the directional improve-

ments in the search space through inter-generational solutions, to help the offspring advance

effectively towards a better convergence. This is realized through three modules, including:

Training-dataset construction, ML Training, and Offspring’s Advancement. The design and im-

plementation of these modules are detailed in the following subsections.

3.1.1 Training-dataset Construction Module

At any generation t of the RV-EMO algorithm, the training-dataset is constituted by the mapping

between members of an input-archive At and the members of a target-archive Tt. The process of

constituting and updatingAt and Tt, and their members’ mapping is presented below. Towards it’s

prerequisite terminology, let Pt (sized N ) be the parent population; Qt (sized N ) be the offspring

population; R (sized N ) be the RV set; and tpast be a user-defined parameter that represents the

number of past generations to be involved in the composition of At.

3.1.1.1 Input-archive Composition and Update

At any generation t, the input-archive At is intended to serve as a pool of reasonably diverse

distinct solutions from previous generations, which can be mapped onto representative solutions

in the current generation (target-archive), so that: (a) an ML method could learn the directional

improvements in the search space, and (b) such a learning could be utilized to help some of

the current offspring advance or progress more effectively. In this spirit, At = {Pt−tpast} ∪

{Qt−tpast , Qt−tpast+1, . . . Qt−1}. Notably:

1. first both the parents and offspring in the (t − tpast)th generation are included to account
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for maximum diversity without incorporating any duplicate solutions (since the parents and

offspring in any generation are distinct).

2. in addition, only the offspring from the (t− tpast + 1)th until the (t− 1)th generation are

included, while the corresponding parents are excluded. This is done to avoid duplicity of

(parent) solutions, since in any particular generation, not all parents may replaced by the

offspring. This duplicity would be more prevalent in the later generations of an RV-EMO-

IP2 run, compared to earlier generations.

Given its composition, At naturally gets updated, with every increment in the t counter.

3.1.1.2 Target-archive Composition and Update

As indicated above, the target-archive Tt is intended to serve as a set of representative solutions,

onto which the solutions from previous generations (At) could be mapped to provide a basis for

ML training and its subsequent use. In this spirit, Tt is defined as a set of N target solutions

obtained along the N RVs, till the tth generation. This poses three pertinent questions:

1. how to initialize the target-archive, of size N , such that one target solution gets associated

with each RV.

2. how to determine the potential targets from the parents in a subsequent generation t,

namely, Pt.

3. how to update the existing target-archive, namely, Tt−1, by incorporating the potential

targets from Pt. This, in effect, amounts to determining the best N target solutions till the

tth generation.

The pre-requisite for initialization of the target-archive Tt (at t = 1) and its subsequent update

(at t ≥ 2), is the normalization of the parent population Pt in the F -space. This normalization

can be achieved with the help of ideal (Z ideal
[1×M ]) and nadir (Znadir

[1×M ]) points3, using the formulation

given below, where M is the number of objectives.

f̄m(X) =
fm(X)− Z ideal

m

Znadir
m − Z ideal

m

, ∀m ∈ {1, 2, . . . ,M} (3.1)

3Majority of the RV-EMO algorithms (including NSGA-III [Deb and Jain, 2014] and MOEA/D [Zhang and Li,

2007]) rely on the normalization of the F -space, and have to approximate the ideal and nadir points as a pre-requisite.

Those approximated ideal and nadir points can be used directly by the IP2 operator.
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Then, Tt can be initialized by associating one member of Pt with each RV, as its target.

For coherence, the criterion for such an association, is made to coincide with the criterion for

association adopted by the base RV-EMO algorithm (that the IP2 operator is to be integrated

with). For instance, given an RV, an RV-EMO algorithm such as NSGA-III [Deb and Jain, 2014]

would associate the non-dominated solution offering minimum perpendicular distance (PD). In

contrast, another RV-EMO algorithm, such as MOEA/D [Zhang and Li, 2007], would associate

the solution offering minimum ASF or PBI value. These metrics define the criteria for identifying

the best solution (in the normalized F -space) for a given RV, as discussed earlier in Section 2.3

(Chapter 2). For ease of reference, the formulations of these metrics are given below.

PD: V = ∥(F̄(i) −RT
(j)F̄(i)R(j)/∥R(j)∥2)∥

ASF: V = maxm∈[1,M ]{F̄(i),m/R(j),m} (3.2)

PBI: V = d1 + θd2, where

d1 = ∥F̄ T
(i)R(j)∥/∥R(j)∥; d2 = ∥F̄(i) − d1(R(j)/∥R(j)∥)∥

In any subsequent generation t, the following methodology is used to determine the potential

targets for the RVs. It may be noted that these RVs are common to both the IP2 operator and

the underlying RV-EMO algorithm. Given this, for each solution in Pt, the relevant metric (PD4

or PBI or ASF or any other, as used by the underlying RV-EMO algorithm) is computed with

respect to each RV. Subsequently, each solution in Pt is associated as the potential target for the

RV offering minimum/best metric value. Clearly, some RVs may get associated with multiple

potential targets, while some may remain unassociated.

At any generation t (t ≥ 2), the existing target archive Tt−1 and the potential targets from

Pt, are available. In this situation, the task of determining the best N target solutions till the

tth generation, reduces to updating of Tt−1 by accounting for the potential targets from Pt. In

such a case, each RV may have two contenders for the target: (a) one, in the form of the existing

target member from Tt−1, and (b) another, in the form of the potential-target from Pt. Again,

the contender which fares better in the metric adopted by the underlying RV-EMO algorithm is

declared as the updated target for that RV. The process of updating Tt using any generic metric

(PD or PBI or ASF) is given in Algorithm 3.1.

Notably, in lines 8–12 of Algorithm 3.1, for a given candidate target solution, first the best RV
4While comparing any two solutions, the first comparison is through dominance, followed by PD values. This is

only applicable for PD since it does not account for convergence at all.
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Algorithm 3.1: Update Target Archive (Pt, Tt−1,R, Z ideal, Znadir)

Input: Parent population Pt, last target archive Tt−1, set of RVsR, ideal point Z ideal, nadir point Znadir

Output: Updated target archive Tt

1 {FT , FP } ← Objective function values in {Tt−1, Pt}

2 {F̄T , F̄P } ← Normalized {FT , FP } using Z ideal and Znadir

3 V[N×N ] ← ∅ % stores evaluated metric values

4 Tt ← Tt−1

5 for i = 1 to N do

6 for j = 1 to N do

7 Vi,j ← Metric value of F̄P
(i) w.r.t.R(j)

8 V P ← minNj=1 Vi,j % best value for ith solution

9 I ← argminNj=1 Vi,j % Index of RV for ith solution

10 V T ← Metric value of F̄T
(I) w.r.t.R(I)

11 if V P < V T then

12 Tt,(I) ← Pt,(i)

is identified on the basis of the underlying metric and then, the best solution among the candidate

target solution and the existing target solution associated with the identified RV, is selected. Here,

the former step ensures that the target solution lies in the neighbourhood of the RV, while the

latter step ensures convergence locally within that neighbourhood. A similar approach has been

proposed earlier in MOEA/D-STM [Li et al., 2014c], where both the steps mentioned above (with

a small difference) are adopted to identify the association of one solution per RV. The difference

is that in MOEA/D-STM, the latter step identifies the most converged solution from the entire

pool of solutions, not just the solutions lying in the neighbourhood of a particular RV (as done in

Algorithm 3.1).

Figure 3.2 captures a realistic scenario for any generation t (t ≥ 2), where, for each RV in

R = {R1,R2, . . . ,R6}, there exists: (a) a corresponding target from Tt−1 = {m1, m2, . . . ,

m6}, and (b) none, unique, or multiple potential targets from members in Pt = {s1, s2, . . . , s6}.

Assuming that the IP2 operator is to be integrated into NSGA-III, that uses a dominance check

followed by PD, the update of the target-archive entails the following:

1. for each of R1, R3, and R6, there is one associated target from Tt−1, and one potential

target from Pt. As evident from the figure, the latter emerge as the updated targets, as they

dominate the original targets from Tt−1.
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Figure 3.2. A schematic for identifying target solutions along each RV, using PD (with a dominance check,

as applicable for integration with NSGA-III) in a two-objective space. Notice how a dominated solution

(m5) is considered as a target point for a poorly represented RV (R5) for encouraging possible creation of

points around that RV.

2. for R2, the associated target solution from Tt−1 is m2; however, there are two potential

target solutions from Pt, namely s2 and s3. Here, s2 emerges as the updated target solution

as it dominates both s3 and m2.

3. for R4, the associated target solution is s5 since it is non-dominated to m4 but offers a

better (lower) value of PD.

4. forR5, the associated target solution from Tt−1 ism5, however, there are no potential target

solutions from Pt. Even though s6 dominates m5, s6 is not considered since it is associated

with another RVR6. Hence, m5 is retained as the updated target solution.

5. the target archive Tt, factoring in both Pt and Tt−1, becomes {s1, s2, s4, s5,m5, s6}.

3.1.1.3 Archive Mapping

This is the last step of the training-dataset construction module, where the solutions in At are

mapped onto those in Tt, to yield the training-dataset Dt. Each solution in At is associated

to some RV (as discussed above), and with each RV a solution from the Tt is associated (as
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Algorithm 3.2: Archive Mapping (At, Tt,R, Z ideal, Znadir)

Input: Input archive At, target archive Tt, set of RVsR, ideal point Z ideal, nadir point Znadir

Output: Training Dataset Dt

1 FA ← Objective function values in At

2 F̄A ← Normalized FA using Z ideal and Znadir

3 Dt ← ∅

4 V[1×N ] ← ∅ % stores evaluated metric values

5 for i = 1 to sizeof(At) do

6 for j = 1 to N do

7 Vj ← Metric value of F̄A
(i) w.r.t.R(j)

8 I ← arg minNj=1Vj

9 input← X vector of At,(i); target← X vector of Tt,(I)

10 Dt ← Dt

⋃
[input, target]

discussed above). Hence, the involved RV provides a basis for association of each solution in At

with a particular solution in Tt. For instance, if a solution ai ∈ At is associated with a particular

RV, say Rj , then there is also a solution, say mk ∈ Tt, that is associated with Rj . Hence, the

solution ai gets mapped onto mk. Since the goal of the IP2 operator is to learn the directional

improvements in the search space, only the variable vectors (X) of these solutions are stored in

Dt. In the context of the above example, the variable vectors of ai and mk together form one

input-target sample for Dt. This process, summarized in Algorithm 3.2, effects the capture of

pertinent search directions in X-space, guided by the improvements along the RVs in F -space.

Notably in Figure 3.2, m5 symbolizes a larger issue of maintaining the convergence-diversity

tradeoff. Since m5 is dominated by another target member (s6), it characterizes poorer conver-

gence. However, being the best-representative for R5 till the tth generation, m5 marks a suitable

choice for maintaining diversity. In this background, the following options are open:

1. BothR5 andm5 be dropped, implying that no solutions inAt associated withR5 contribute

to Dt: this option would fail to capture any information about the solutions associated to

R5 in the training-dataset, making it an unsuitable choice.

2. R5 be kept while m5 is dropped, implying that solutions in At associated with R5 can be

mapped to a target associated with a nearby RV, say s6 (more converged than m5): this

option would amount to pursuing better convergence at the cost of loss in diversity.
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3. BothR5 and m5 be kept, implying that the solutions in At associated withR5 are mapped

to m5: this option would amount to attaching importance to diversity preservation during

offspring’s advancement even at the cost of poorer convergence.

In this thesis, a judicious choice in favour of the third option has been made, guided by the follow-

ing rationale: (a) diversity preservation is crucial, especially in the early RV-EMO generations,

and (b) the marginal compromise in convergence can always be overcome during subsequent

generations as long as all regions of the search space are equitably explored.

3.1.2 ML Training Module

The goal here is to train an ML model, here random forest (RF), so it learns such directional

improvements in the search space that define the transition of input solutions to their respective

target solutions. Ideally, any multi-output regression method can be used as an alternative to RF.

Some potential alternatives include artificial neural network (ANN), gradient boost, XG boost,

least angle regression and support vector regression. Since the primary motive here is to provide

a proof of concept that ML methods could be used in an RV-EMO algorithm for creation of

pro-convergence offspring solutions, the scope in this thesis has been restricted to providing the

proof-of-concept with one of the ML methods rather than identifying the best ML method for

this purpose (which may also depend on the characteristics of the given MOP).

The ML training module is executed as a two-step process: (a) normalization of the training-

dataset using the proposed dynamic normalization method, as a pre-training step, and (b) the ML

training itself, as presented in Algorithm 3.3. Notably, each time the IP2 operator is invoked, a

new ML model is trained, and the last trained ML model is discarded.

3.1.2.1 Dynamic Normalization of the Training Dataset

The dynamic normalization of the training-dataset, here, refers to normalization of the variable

vectors in each input-target sample, using adaptive bounds, for each variable xk ∈ X . The

motivation behind this idea is as follows:

(a) the scales and ranges of different variables, as per the problem, may be different,

(b) at any iteration t, the range explored by a particular (kth) variable [xl,tk , x
u,t
k ], a fraction of

its total permissible range [xlk, x
u
k], may differ from that of another,
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Algorithm 3.3: Training(Dt, [x
l, xu])

Input: Training dataset Dt, lower & upper bounds of variables specified in the problem, xl and xu

Output: Trained ML model ML, Bounds [xmin, xmax]

1 {xl,t, xu,t} ← Minimum and Maximum of each variable in Dt

2 xmin, xmax ← ∅, ∅ % bounds for dynamic normalization

3 for k = 1 to nvar do

4 xmin
k = 0.5(xl,t

k + xl
k)

5 xmax
k = 0.5(xu,t

k + xu
k)

6 Normalize Dt using xmin and xmax as bounds

7 ML← Trained ML model using Dt

(c) the normalization of variables also promises to even-out each’s contribution to the loss/error

function Mean Squared Error (MSE), as used in this thesis.

Given the above, the dynamic normalization of any variable k is given below:

x̄k =
xk − xmin

k

xmax
k − xmin

k

, (3.3)

where

xmin
k = 0.5

(
xlk + xl,tk

)
, and xmax

k = 0.5
(
xuk + xu,tk

)
.

This normalization, which gives equal importance to a variable’s absolute and current range,

is employed twice in a generation:

(a) to normalize the training-dataset before the ML training, and

(b) to normalize each offspring before advancing it (in the subsequent offspring’s advancement

module), and then to de-normalize each advanced offspring back to the original search

space (in xk ∈ [xlk, x
u
k ] ∀ k ∈ {1, 2, . . . , nvar}).

3.1.2.2 Training an RF Model

Once the normalization is executed, as discussed above, an RF model is trained on the normalized

training-dataset. In that, it requires three critical settings–the number of trees (Ntr); the number

of variables/features considered while splitting a node (Nfeat); and the splitting criterion. Con-

sidering that the training-dataset Dt is constituted by Nsam training samples, the parameters are
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fixed as: Ntr = Nsam and Nfeat = nvar. The splitting criterion used is MSE, and the rest of the

RF settings are kept as default5.

3.1.3 Offspring’s Advancement Module

In this module, the trained ML model is applied directly to advance the offspring solutions,

without their prior evaluation. This module is executed as a four-step process, where each step

advances/alters the offspring’s variable vector. In this study, the act of “advancement” towards

better convergence is referred to as “progression”, and beyond this point, the “advanced offspring

solutions” are referred to as the “progressed offspring solutions” (Xpg). The constitutive steps of

offspring’s advancement are detailed below.

3.1.3.1 Selection and Progression

Once the offspring solutions Qt are created using the natural variation operators of the base RV-

EMO algorithm on Pt, a proportion P IP2 of them are randomly selected (⌊P IP2N⌋ offspring),

and the trained ML model is used to advance these selected offspring. In that, the following

aspects are notable.

• Since the ML model is trained on the normalized dataset, the offspring solutions created

through natural variation operators are first normalized, then advanced using the ML model,

and then denormalized, as discussed earlier in Section 3.1.2.1.

• The random selection of ⌊P IP2N⌋ offspring is made to avoid their evaluation a priori.

3.1.3.2 Near-boundary Restoration

Consider a problem where some of the optimum solutions are characterized by the extreme or

boundary values for a particular variable xk, implying either x∗k = xlk or x∗k = xuk . It would be

desirable that xk is pushed to its respective extreme at the time of progression. However, during

the initial or even intermediate generations of the underlying RV-EMO algorithm, the training

dataset may predominantly contain xk values away from its extremes. Hence, the trained ML

model may be biased against the extreme values for xk. Consequently, if a natural offspring

5The RF Regressor used in this study has been taken from the Scikit-learn implementation (for python). Link:

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
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(created through natural variation operators) possessing a near-extreme value for xk is subjected

to progression using the ML model, it is likely that xk gets pushed in the direction opposite to

what is desired. In such a case, the progression of xk could be self-defeating. To help avoid such

instances, it is important that the variables having values very close to their extremes be barred

from progression. From an implementation perspective, where the entire variable vector of the

selected offspring is subjected to the trained ML model, without any direct control on individual

variables in the vector (some xk ∈ X), it is imperative that the progression be undone for those

variables which, prior to progression, had values in very close proximity to their extremes. To

this effect, it is proposed that in any progressed offspring, the original values be restored for all

such variables which, prior to progression, had values within 1% of either of their extremes.

3.1.3.3 Jutting the advanced/progressed offspring

Understandably, the ML model learns the directional improvements that define the transition of

the solutions from previous generations to the best solution till the current generation, along each

RV. The current offspring’s advancement using such an ML model is based on the assumption

that the directions found pertinent in the past shall again help the offspring transition to better

solutions. In this situation, the IP2 operator treats the learnt directions for different RVs as

promising search directions, and introduces the notion of step-length through the parameter η,

leading to jutted offspring solutions, given by:

X jpg = X + η × (Xpg −X), (3.4)

where X and Xpg mark the original and the progressed offspring, respectively, and X jpg repre-

sents the consequent jutted offspring. Notably, η = 1 leads to the originally progressed offspring

(X jpg = Xpg), while η > 1 leads to a different offspring (X jpg ̸= Xpg). Fundamentally, jutting

counters the limitation that many ML-based regression methods, including RF, are not suitable

for extrapolation, despite their excellence in predicting the data that can be interpolated from

the input training dataset. In effect, the challenge that the IP2 operator may not help create off-

spring solutions in regions that can only be achieved by extrapolating on the current population,

is largely alleviated through jutting.
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3.1.3.4 Boundary Repair

In the EMO domain, there are several common methods to prevent an operation from setting a

variable’s value outside its original bound. These include: (a) replacing by the variable value at

its respective bound, (b) choosing an arbitrary value within the variable bound, or (c) mapping

the value inwards, proportionally as much as it was outside the bound (“reflection”). While the

first method may deteriorate the population’s diversity in the search space since several offspring

might end up with the same variable values (their respective bound), the second method may de-

teriorate the search efficiency by introducing random variable values into several offspring. In the

wake of above, the IP2 operator incorporates a sophisticated variant of the third method [Padhye

et al., 2013]. In that, any variable xk ∈ X jpg that goes outside its permissible bounds ([xlk, x
u
k])

is mapped to an inner value based on an Inverse Parabolic Spread Distribution.

The overall process of the offspring’s advancement, as described through the four steps above,

is summarized in Algorithm 3.4.

Algorithm 3.4: Progression(Qt,η,[xmin, xmax],[xl, xu], ML, P IP2)
Input: Original offspring Qt, jutting parameter η, bounds from Algorithm 3.3 [xmin, xmax], variable

bounds in problem definition [xl, xu], proportion of offspring to be advanced PIP2

Output: Progressed offspring Qt

1 I ← Randomly selected ⌊PIP2N⌋ offspring from Qt

2 for X ∈ I do

3 X̄ ← Normalize X using xmin and xmax

4 X̄pg ←ML(X̄)

5 Xpg ← Denormalize X̄pg using xmin and xmax

6 for each variable k ∈ [1, nvar] do

7 Restore xpg
k to xk if xk lies in 1% vicinity of its bounds

8 X jpg ← Jutted offspring from X, Xpg and η % equation 3.4

9 Boundary Repair on X jpg

10 Replace the original offspring in Qt by X jpg

3.2 Integration of IP2 operator into NSGA-III

This section outlines the integration of the IP2 operator with NSGA-III, leading to NSGA-III-

IP2. This integration, summarized in Algorithm 3.5 is generic in nature, and can be extended to
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any other RV-EMO algorithm.

Algorithm 3.5: Generation t of NSGA-III-IP2
Input: Ideal point Z ideal, Nadir point Znadir, Reference-vector setR, original variable bounds [xl, xu],

Parent population Pt, Target Archive Tt−1, Input Archive At, number of past generations tpast

used in At, frequency of progression tIP2
freq, generation of last progression tIP2

pg , jutting parameter η,

number of survived offspring in (t− 1)th generation N survived
t−1

Output: Pt+1, Tt, tIP2
pg , tIP2

freq, At+1, N survived
t

1 Tt ← Update Target Archive(Pt, Tt−1,R, Z ideal, Znadir)

2 if Non Dominated(Pt) & t− tIP2
pg = tIP2

freq then

3 flag ← True

4 else

5 flag ← False

6 if flag =True then

7 Dt ← Archive Mapping(At, Tt,R, Z ideal, Znadir)

8 ML, [xmin, xmax]← Training(Dt, [x
l, xu])

9 Qt ← Variation(Pt)

10 if flag = True then

11 Qt ← Progression(Qt,η,[xmin, xmax],[xl, xu], ML, PIP2)

12 tIP2
pg ← t

13 Evaluate Qt

14 At+1 ←
(
At ∪Qt ∪ Pt+1−tpast

)
\ [Pt−tpast ∪Qt−tpast ]

15 Pt+1 ← Survival selection(Pt ∪Qt)

16 N survived
t ← sizeof(Qt ∩ Pt+1)

17 if t = tIP2
pg then

18 if N survived
t > N survived

t−1 then

19 tIP2
freq ← tIP2

freq − 1

20 if N survived
t < N survived

t−1 then

21 tIP2
freq ← tIP2

freq + 1

Notably, Algorithm 3.5 represents any intermediate generation t of NSGA-III-IP2, and in-

volves a new parameter, namely, tIP2freq, that specifies the number of generations between two

successive progressions. First, the target archive Tt is updated using Algorithm 3.1 (line 1, Al-

gorithm 3.5). Then, if the entire population has become non-dominated, and if tIP2freq generations

have passed after the last invoked progression in generation tIP2pg , the IP2 operator is invoked (lines
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2–5, Algorithm 3.5). The non-domination check is crucial towards ensuring that before the IP2

operator is invoked for the first time, a reasonable diversity in the F -space has been achieved, to

effect better learning. If yes, the flag is marked True, following which the training dataset Dt

is generated using Algorithm 3.2, and the ML training is done using Algorithm 3.3 (lines 6–8,

Algorithm 3.5). Subsequently, offspring are produced using the variation operators (crossover

and mutation in this case), followed by (i) progression of the offspring using Algorithm 3.4, (ii)

their evaluation, (iii) update of the archive At, and (iv) NSGA-III’s survival selection (lines 9–

15, Algorithm 3.5). Towards the end, the count of offspring that survived to the next generation

(N survived
t ) is estimated (line 16, Algorithm 3.5). If this count has improved compared to the

previous generation, implying a good performance of the IP2 operator, then tIP2freq is reduced by 1,

implying a more frequent progression. However, if this count has degraded, implying a poorer

performance of the IP2 operator, tIP2freq is increased by 1 implying a less frequent progression.

Notably, this adaptation of tIP2freq is executed only in generations where IP2 is invoked.

3.3 Computational Complexity of IP2 operator

As detailed in the section above, the proposed IP2 operator is constituted by three modules. In the

following subsections, time and space complexity of each constituent module has been discussed,

followed by its overall summary.

3.3.1 Training-Dataset Construction Module

This module pertains to updating of At and Tt, and mapping of the solutions, therein. The

respective time complexities of these three steps are given below.

• Update of input archive: The process of updating At to At+1 involves replacement of 2N

solutions. These solutions are known, and their selection involves no extra computation.

Hence, the time complexity of this step is O(N).

• Update of target archive: The process of updating Tt is summarized in Algorithm 3.1. It

includes N × N computations of the metric (such as PD or PBI or ASF), which has the

complexity of O(M). Hence, the resulting time complexity is O(MN2).

• Archive mapping: The process of archive mapping is summarized in Algorithm 3.2. It

includes sizeof(At) × N computations of the metric (such as ASF, PD, etc.). From the
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defined composition of At, we have sizeof(At) = N(tpast + 1). Hence, the resulting time

complexity of the archive mapping step is O(MN2tpast).

During the training-dataset construction, the input archive At, target archive Tt and the train-

ing dataset Dt, are stored. Considering the sizes of At, Tt and Dt, their space complexity is

O(Ntpast), O(N) and O(Ntpast), respectively. Hence, the worst time and space complexity of

this module are O(MN2tpast) and O(Ntpast), respectively.

3.3.2 ML Training Module

The training dataset (constructed in the previous module) is used to train the RF in this module.

The worst case time complexity of training an RF is O(NtrnvarN
2
sam log (Nsam)), where Ntr de-

notes the number of trees in the RF, Nvar denotes the number of variables or features considered

in the RF and Nsam denotes the number of training samples or the size of training-dataset that

is used to train the RF [Louppe, 2015]. Similarly, the worst case space complexity of the RF is

O(NtrnvarNsam). As per the parameter settings discussed in Section 3.1.2, Ntr = N(tpast + 1),

nvar = nvar andNsam = N(tpast+1). Upon substituting their values and simplifying, the obtained

time and the space complexities of the ML training module are O(N3t3pastnvar log (Ntpast)) and

O(N2t2pastnvar), respectively.

3.3.3 Offspring’s Advancement Module

Evidently, this module (Algorithm 3.4), is executed in four steps, namely, (a) selection and pro-

gression, (b) near-boundary restoration, (c) jutting, and (d) boundary repair. In the last three steps

(b–d), the respective functions have a time complexity of O(nvar), that are repeated for ⌊P IP2N⌋

solutions. Hence, their time complexity is O(Nnvar). However, in the first step of selection and

progression, ⌊P IP2N⌋ offspring are advanced using the trained RF model. From [Louppe, 2015],

the worst-case time complexity for prediction using an RF isO(NtrnvarNsam), which is the same

as the space complexity of the RF as discussed in the previous subsection. Upon simplifying, the

time complexity of a prediction through RF becomesO(N2t2pastnvar). Since ⌊P IP2N⌋ predictions

are made (considering progression of only ⌊P IP2N⌋ offspring), the resulting time complexity is

O(N3t2pastnvar). Moreover, since the progressed offspring replace the original offspring, there is

no related space complexity of the offspring’s progression module.

The worst case time complexity and space complexity of each constituent module of the IP2
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Table 3.1. Time- and space-complexities of different modules of the IP2 operator

Module Time-complexity Space-complexity

Training-dataset generation O(MN2tpast) O(Ntpast)

ML training O(N3t3pastnvar log (Ntpast)) O(N2t2pastnvar)

Offspring’s progression O(N3t2pastnvar) –

operator is summarized in Table 3.1. Evidently, training of an RF has the highest time complexity,

while the trained RF model has the highest space complexity.

3.4 Experimental Setup

This section sets the foundation for experimental investigation, by highlighting the: (i) test-suite

considered, (ii) performance indicators used and related statistical analysis, and (iii) parameters

pertaining to the RV-EMO algorithm(s) and the IP2 operator.

3.4.1 Test-suite

To demonstrate the search efficacy infused by the IP2 operator into an RV-EMO algorithm, sev-

eral two- and three-objective problems with varying degrees of difficulty have been used. These

include: ZDT [Zitzler et al., 2000], DTLZ [Deb et al., 2005] and MaF [Cheng et al., 2017] prob-

lems6 with the following specifications.

• ZDT (M = 2): their respective g(X) have been modified to have the PO solutions at

x∗k = 0.5 ∀ k ∈ {2, . . . , 30}, instead of x∗k = 0. Such a shifting of optima to a non-

boundary value, devoids the IP2 operator of any biased advantage, owing to its boundary

repair method, leading to a fair comparison. To emphasize this difference, the modified

ZDT problems are referred to as Z̃DT in the remainder of this thesis.

• DTLZ and MaF (M = 3): the distance variables k have been kept as 20, to make the

problems more convergence-hard, as compared to the generally used k = 5 or 10.

6Notably, the redundant problems such as DTLZ5, DTLZ6 and MaF6 have been excluded. Since only a small

number of RVs pass through the PF of these problems, they are ineffective for demonstrating the efficacy of the IP2

operator that learns the search directions along the RVs. In addition, DTLZ7 has been omitted since it overlaps with

MaF7, already considered in the test-suite.
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3.4.2 Performance Indicators and Statistical Analysis

Hypervolume has been used as the primary performance indicator since it serves as a combined

indicator for convergence and diversity. Computing the hypervolume requires a reference point

to be specified, which is set as R1×M = [1 + 1
p
, . . . , 1 + 1

p
] [Ishibuchi et al., 2018], where p is the

number of gaps set for the Das-Dennis method [Das and Dennis, 1998] while generating the RVs

for RV-EMO. Notably:

• while for the Z̃DT and DTLZ problems, the scales of different objectives are equal, they

differ for some MaF problems. Hence, the solutions are normalized in the F -space using

the theoretical PF extremes, for the latter.

• while the median of the hypervolume values from two algorithms can be compared di-

rectly (the higher, the better), these values are subjected to a statistical analysis using the

Wilcoxon ranksum test [Wilcoxon, 1945]. Here, the threshold p-value of 0.05 (95% confi-

dence level) has been used.

Notably, Hypervolume jointly indicates the quality of convergence and diversity, as assessed

in the F -space. For further insights into the convergence levels in the X-space, the population

mean of the g(X) function values has also been reported.

3.4.3 Parameter Settings

In this subsection, the parameters and settings used for: (a) the RV-EMO algorithm, i.e., NSGA-

III, and (b) the IP2 operator, i.e., P IP2, tpast, tIP2freq and η, have been discussed.

3.4.3.1 RV-EMO Settings

With an aim to obtain a reasonably sized set of RVs using the Das-Dennis method [Das and

Dennis, 1998], the gap parameter p is set as: (i) p = 99 for two-objective problems, leading to

100 RVs, and (ii) p = 13 for three-objective problems, leading to 105 RVs. For coherence, the

population sizes of N = 100 and N = 105 are used in NSGA-III, for two- and three-objective

problems, respectively. Further, the natural variation operators include SBX crossover (pc = 0.9

and ηc = 20) and polynomial mutation (pm = 1/nvar and ηm = 20) for an nvar variable problem.

For each test instance, the performance of each RV-EMO algorithm has been assessed over its

runs with 31 random seeds. To avoid an arbitrary fixation of the termination generations tterm, a
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stabilization tracking algorithm [Saxena and Kapoor, 2019] has been included in NSGA-III-IP2.

This stabilization tracking algorithm requires a parameter set, kept as ψterm ≡ {3, 50}, which

suggests the tterm for NSGA-III-IP2 on-the-fly. The mean tterm determined for NSGA-III-IP2

over 31 runs has been used as the tterm for NSGA-III.

3.4.3.2 IP2 Operator Settings

The IP2 operator involves four parameters: P IP2, tpast, tIP2freq and η. Here, P IP2 refers to the

proportion of the total offspring (N ) advanced using the IP2 operator; tpast controls the size of

the input archive At and the training-dataset Dt; tIP2freq controls the invocations of the IP2 operator;

and η controls the extent of jutting of the progressed offspring.

P IP2 = 50% has been used, as reasoned earlier in Section 1.2 (Chapter 1). Further, tIP2freq

has been adapted on-the-fly based on the survival of the offspring, as can be observed in Algo-

rithm 3.5. Its initial value is set as 1. To avoid an adhoc fixation of η, it is set as a random value

in [1.0, 1.5], implying a maximum of 50% extra advancement along the learnt search directions.

While tIP2freq and η could be rationally adapted or set, a direct impact of tpast on the performance

of the IP2 operator is uncertain. Towards this, the behaviour of NSGA-III-IP2 with respect to

different values of tpast, has been discussed and investigated here briefly.

As mentioned above, tpast controls the size of the training dataset Dt. The potential implica-

tions of varying tpast, on the performance of IP2 operator are mentioned below.

• A lower value of tpast would lead to a smaller size of Dt, and would require a lower ML

training time, since its dependence on tpast can be given as O(t3past log tpast). However, the

size of Dt may become insufficient to train the ML model well.

• On the other hand, a higher value of tpast would lead to a larger (sufficient) size of Dt,

but would consequently require a higher ML training time. In addition, the directional

improvements (in the search space) learnt from a longer history of solutions may not be

pertinent for subsequent generations.

In the wake of above, it is fair to infer that the value of tpast should be in a certain range, such

that a sufficient size of Dt can be obtained, and a higher ML training time can be avoided. To-

wards this, a sample parametric study on tpast is presented here, on three problems from different

test suites, namely, Z̃DT1, DTLZ1 and MaF1, with tpast = {1, 3, 5, 7, 9}. The median hypervol-
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ume obtained by NSGA-III-IP2 at tterm generations determined on-the-fly is shown in Table 3.2.

In that, the best-obtained hypervolume and its statistically equivalent results, are marked in bold.

Table 3.2. Median hypervolume obtained by NSGA-III-IP2 with different tpast values.

Problem tpast = 1 tpast = 3 tpast = 5 tpast = 7 tpast = 9

Z̃DT1 0.681859 0.681859 0.681859 0.681859 0.681859

DTLZ1 1.222185 1.222243 1.22407 1.222514 1.22193

MaF1 0.233907 0.235205 0.234613 0.236887 0.233841

Interestingly, Table 3.2 suggests that for the considered problems, the performance of NSGA-

III-IP2 is not very sensitive to the choice of tpast. Notably, among the potential values, tpast = 5

is picked for further use in this thesis, since it: (i) emerges as the lowest value offering good

performance for all the problems, and (ii) promises a moderate ML training time. It may be fair

to hypothesize that even for unknown problems, tpast = 5 may suitably balance the requirements

of – a reasonably sized training data and moderate ML training time, if a reasonable population

size (N ) is used by the underlying EMO algorithm.

3.5 Results and Discussions

This section compares the performance of NSGA-III-IP2 vis-à-vis NSGA-III, on a wide range of

test problems.

3.5.1 General trends

As highlighted earlier, hypervolume has been used as the primary performance indicator, sup-

ported by the g(X) function, for further insights. In this background, Table 3.3 reports the median

hypervolume and median g(X) values, from among the 31 randomly seeded runs at the end of

tterm generations. In that, tterm has been determined on-the-fly for NSGA-III-IP2, and the same

has been used for NSGA-III. From this table, the following can be observed.

• In terms of the hypervolume: NSGA-III-IP2 performs either statistically better than or

equivalent to NSGA-III in 20 out of the 21 test instances.

• In terms of the g(X) values: NSGA-III-IP2 performed statistically better than or equivalent

to NSGA-III in each of the 18 test instances, where g(X) function was existent/computable
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Table 3.3. Hypervolume and g(X) based comparison of NSGA-III and NSGA-III-IP2 on benchmark

Z̃DT, DTLZ and MaF problems, at tterm generations determined on-the-fly for NSGA-III-IP2 using a

stabilization tracking algorithm. In each row, the respective generations (tterm) are shown with the median

hypervolume values and median g(X) values. The best performing algorithm and its statistical equivalent

are marked in bold.

Problem tterm
Median hypervolume Median g(X)

NSGA-III NSGA-III-IP2 p-value g(X)|X∈PS NSGA-III NSGA-III-IP2 p-value

M
=

2

Z̃DT1 1197 0.681860 0.681860 8.46E-02 1 1.000732 1.000427 2.47E-07

Z̃DT2 1280 0.348793 0.348794 3.66E-02 1 1.000580 1.000315 6.19E-08

Z̃DT3 1005 1.068427 1.068537 8.98E-02 1 1.006285 1.005028 4.21E-04

Z̃DT4 1768 0.681859 0.681860 4.10E-01 1 1.000040 1.000001 3.59E-07

Z̃DT6 1808 0.312677 0.319672 6.86E-06 1 1.429366 1.356089 1.76E-06

M
=

3

DTLZ1 1408 1.221260 1.221979 3.28E-01 0 0.022966 0.014078 3.35E-01

DTLZ2 970 0.667330 0.667333 2.75E-01 0 0.000021 0.000030 8.38E-01

DTLZ3 1658 0.649913 0.660617 3.78E-02 0 0.009864 0.003851 3.78E-02

DTLZ4 1509 0.667305 0.667316 6.07E-01 0 0.000021 0.000015 9.05E-01

MaF1 603 0.236040 0.234557 2.99E-05 0 0.001816 0.001299 4.32E-05

MaF2 500 0.396730 0.396523 2.03E-01 0 0.145610 0.097152 8.32E-05

MaF3 2078 1.193480 1.193830 1.49E-01 0 0.004076 0.003067 1.41E-01

MaF4 1315 0.615647 0.627573 7.40E-05 0 0.023300 0.010995 9.35E-05

MaF5 1344 1.227613 1.227601 8.21E-02 0 0.000036 0.000047 3.01E-01

MaF7 1215 0.375931 0.376036 5.13E-01 1 1.003598 1.003468 7.84E-01

MaF8 1510 0.464343 0.463852 1.16E-01 – – – –

MaF9 1326 0.626818 0.626816 6.62E-02 – – – –

MaF10 982 0.527672 0.516973 7.04E-02 0 0.017232 0.018419 6.17E-01

MaF11 965 0.980408 0.979677 6.37E-01 0 0.000993 0.001157 8.46E-02

MaF12 737 0.600200 0.614154 4.16E-09 0 0.260721 0.180398 8.72E-03

MaF13 934 0.367100 0.372636 2.90E-03 – – – –

Total −→ 15 20 of 21 probs. 8 18 of 18 probs.

Note: (–) implies that the concerned problem does not have a g(X) function.

(instances, where it is not existent, are marked by ‘–’).

To share more insights into these results, a sample two- and three-objective problem where

NSGA-III-IP2 reported statistically better than or equivalent hypervolume measures, than NSGA-

III, is dedicatedly discussed below. In addition, the anomalous instance of MaF1 where NSGA-

III-IP2 reported statistically worse hypervolume measures, than NSGA-III, is also discussed.
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3.5.2 Insights into a sample two- and three-objective problem

For a sample discussion on a two-objective problem, the Z̃DT1 problem has been randomly

chosen. Figures 3.3a and 3.3b show the generation-wise median hypervolume and median g(X)

plots, respectively, among the 31 randomly seeded runs of NSGA-III and NSGA-III-IP2. The

termination generation tterm had been set as 1197 for NSGA-III, as was determined on-the-fly

for NSGA-III-IP2. Interestingly, both hypervolume and g(X) measures suggest that the base
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Figure 3.3. Results and analysis of the IP2 operator on two-objective Z̃DT1 problem.

NSGA-III on its own could approximate the PF well (note, g(X)|X∈PS = 1). Hence, as per

the premise for interpretation of the results, laid earlier (Chapter 2, Section 2.5), the scope of the

possible enhancements by the IP2 operator, reduces to speeding-up of the PF -approximation.

This indeed is the case, as endorsed by Figures 3.3c and 3.3d. In that, as the focus is restricted to

only the early generations, NSGA-III-IP2 can be seen to offer superior hypervolume and g(X)

measures, right after the underlying IP2 operator is invoked.

As a follow-up, the MaF12 problem has been chosen for a sample discussion on a three-
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objective problem. Figures 3.4a and 3.4b show the generation-wise median hypervolume and

median g(X) plots, respectively, among the 31 randomly seeded runs of NSGA-III and NSGA-

III-IP2. The termination generation tterm had been set as 737 for NSGA-III, as was determined

on-the-fly for NSGA-III-IP2. Evidently, this presents an instance where the base NSGA-III could

0 200 400 600
Generations

0.2

0.3

0.4

0.5

0.6

M
ed

ia
n 

hy
pe

rv
ol

um
e

NSGA-III
NSGA-III-IP2

(a) Median hypervolume until tterm

0 200 400 600
Generations

0.25

0.50

0.75

1.00

1.25

1.50

M
ed

ia
n 

g(
X)

NSGA-III
NSGA-III-IP2

(b) Median g(X) until tterm

0 10 20 30 40 50
Generations

0.2

0.3

0.4

0.5

M
ed

ia
n 

hy
pe

rv
ol

um
e

NSGA-III
NSGA-III-IP2
IP2 invoked

(c) Median hypervolume in early generations

0 10 20 30 40 50
Generations

0.5

1.0

1.5

M
ed

ia
n 

g(
X)

NSGA-III
NSGA-III-IP2
IP2 invoked

(d) Median g(X) in early generations

Figure 3.4. Results and analysis of the IP2 operator on three-objective MaF12 problem.

not offer a good PF -approximation. This is because, even around/at 737 generations, the hyper-

volume for NSGA-III could not stabilize, and the corresponding g(X) measures remained far

way from the desired g(X)|X∈PS = 0. Hence, as per the premise for interpretation of the results,

laid earlier (Section 2.5, Chapter 2), such a scenario points to the possibility of improvement in

the quality of PF -approximation by the IP2 operator. This indeed is the case, as endorsed by:

• better hypervolume and g(X) measures/trend for NSGA-III-IP2 in Figures 3.4a and 3.4b,

respectively.

• Figures 3.4c and 3.4d, where NSGA-III-IP2 can be seen to offer superior hypervolume and

g(X) measures, right after the underlying IP2 operator is invoked.
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While the above discussions explain the general trend of results in Table 3.3, the focus here

is to share visual insights on why the IP2 operator is able to enhance the performance of NSGA-

III. Towards it, the Z̃DT1 problem has been chosen, and the capability of RF model trained at

a randomly chosen intermediate generation in which the IP2 operator was invoked (t = 35, for

the median run of NSGA-III-IP2), is visually depicted in the Figure 3.5. In that, nearly half of
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Figure 3.5. Actual Offspring progression at t = 35 (a randomly chosen intermediate generation in which

the IP2 operator was invoked) to visually depict the capability of the underlying RF model.

the progressed offspring population can be seen to be superior to the original offspring popula-

tion, while the remaining half can be seen to overlap. This aligns with the proposed offspring

advancement module, wherein only P IP2 = 50% of the original offspring is subjected to the RF

model, hoping for better convergence-characteristics. To summarize, the IP2 operator’s ability to

enhance NSGA-III’s performance could plausibly be attributed to the cumulative effect of:

1. direct improvements in terms of convergence, over all generations where IP2 is invoked,

2. availability of better parents for crossover in the subsequent generations (where IP2 is not

invoked). Notably, in the generation immediately after the invocation of the IP2 opera-

tor, the better fraction of the progressed offspring population is likely to be selected as

crossover-contributing parents, leading to better offspring than otherwise possible. This

has a recursive impact since better offspring in this generation may contribute as fitter par-

ents in the subsequent generation, and so on.

3.5.3 Insights into the MaF1 Problem

As highlighted earlier, MaF1 happened to be the only problem in Table 3.3, where NSGA-III-IP2

reported statistically worse hypervolume measures, than NSGA-III. This is accompanied by the
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fact that NSGA-III-IP2 still managed to have statistically better measures for g(X), than NSGA-

III. These trends imply that compared to NSGA-III:

• NSGA-III-IP2 fares better in convergence criterion (g(X)) but poorer in conjoint convergence-

diversity criteria (hypervolume)

• the loss in diversity corresponding to the use of IP2 is more significant than the corre-

sponding gain in convergence.
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Figure 3.6. NSGA-III and NSGA-III-IP2 populations at tterm, for the MaF1 problem (M = 3).

The latter stands validated by the Figure 3.6, where NSGA-III can be seen to offer better

diversity (in terms of both–the spread, and the distribution within that spread) than NSGA-III-

IP2. This could, in turn, be explained through the two factors highlighted below:

• MaF1 is a problem with inverted PF , which is known to pose challenges to RV-EMO

algorithms, since only a fraction of the underlying RVs pass through the true PF [Ishibuchi

et al., 2017].

• the above challenge could be further augmented by the possibility that: (i) some of the

⌊P IP2N⌋ offspring that get randomly chosen for progression may have been the sole rep-

resentatives of some of the RVs that pass through the true PF . For the sake of discussion,

let the subset of such RVs be referred to as R̂. and (ii) post-progression, some of such (sole

representatives) offspring advance to RVs other than those included in R̂. This implies that

some of the members of R̂ may not be associated with any solution, adversely impacting
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PF coverage/diversity. This additional challenge does not arise in the case of the base

NSGA-III, where the sole representative may be selected.

Notably, the above potential pitfall points to the importance of the diversity enhancing (IP3)

operator, or the Unified operator (UIP) that simultaneously pursues both convergence and diver-

sity. As already highlighted, these operators are dealt with in subsequent chapters.

3.5.4 IP2 Settings vis-à-vis Convergence-Diversity Balance and Risk-Rewards Tradeoff

In view of the results presented in the experimental investigation above, it is fair to infer that

NSGA-III-IP2 effectively addresses the key considerations of convergence-diversity balance and

risk-reward tradeoff, in majority of the considered problems. Such effective management, de-

spite using a pro-convergence operator, could be attributed to the following settings that allow a

dominant share of QV across the generations.

• In any generation of NSGA-III-IP2 run where the IP2 operator is invoked, only P IP2 =

50% pro-convergence offspring are created.

• The invocations of the IP2 operator (governed by tIP2freq ≥ 1) are adaptive, based on the

survival rate of the pro-convergence offspring.

In the context of setting P IP2, following scenarios are possible.

• P IP2 < 50%: any such setting would inherently address the key considerations mentioned

above, since the overall share of QV would be dominant in each generation as well as

across all generations. However, it may lead to more frequent invocations of the IP2 op-

erator compared to P IP2 = 50%, to overall produce the same number of pro-convergence

offspring across all generations. This would lead to more ML model trainings, which is a

computationally inefficient choice.

• P IP2 > 50%: any such setting would not ensure a dominant share of QV across all genera-

tions. As reasoned earlier in Section 1.2 (Chapter 1), this may hamper the management of

the above considerations, consequently deteriorating the effectiveness of the IP2 operator.

While any setting of P IP2 < 50% does not pose a major implication on the effectiveness

of the IP2 operator, any setting of P IP2 > 50% does. Hence, it is imperative to investigate

the latter scenario. Towards this, the performances of IP2 operator with P IP2 = 50% and with
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P IP2 = 80% (a random value > 50%), have been compared on some sample test problems.

The generation-wise median hypervolume plots, from among the 31 randomly seeded runs, are

shown in Figure 3.7. In that, the same tterm generations have been used as given in Table 3.3.

From Figure 3.7, following maybe noted.

0 500 1000
Generations

0.0

0.5

1.0

M
ed

ia
n 

H
yp

er
vo

lu
m

e IP2 = 50%
IP2 = 80%

(a) DTLZ1 (M = 3)

0 250 500 750 1000
Generations

0.0

0.2

0.4

0.6

M
ed

ia
n 

H
yp

er
vo

lu
m

e

IP2 = 50%
IP2 = 80%

(b) DTLZ2 (M = 3)

0 500 1000 1500
Generations

0.0

0.2

0.4

0.6

M
ed

ia
n 

H
yp

er
vo

lu
m

e IP2 = 50%
IP2 = 80%

(c) DTLZ3 (M = 3)

0 200 400 600
Generations

0.0

0.1

0.2

M
ed

ia
n 

H
yp

er
vo

lu
m

e

IP2 = 50%
IP2 = 80%

(d) MaF1 (M = 3)

0 500 1000 1500 2000
Generations

0.0

0.5

1.0

M
ed

ia
n 

H
yp

er
vo

lu
m

e

IP2 = 50%
IP2 = 80%

(e) MaF3 (M = 3)

0 500 1000
Generations

0.0

0.2

0.4

0.6

M
ed

ia
n 

H
yp

er
vo

lu
m

e IP2 = 50%
IP2 = 80%

(f) MaF4 (M = 3)

Figure 3.7. Results of NSGA-III-IP2 with different settings of PIP2 on some test problems.

• In the case of DTLZ2 and MaF1, both settings of P IP2 = 50% and P IP2 = 80% lead to

attaining similar hypervolume values, implying a similar performance. This is plausible

in problems where a reasonable coverage across the true PF has already been obtained

before the IP2 operator is invoked for the first time. In such cases, an over-emphasis on

convergence by producing a dominant share of pro-convergence offspring, may not impact

the overall performance significantly.

• In other cases (DTLZ1, DTLZ3, MaF3 and MaF4), P IP2 = 80% leads to a worse hypervol-

ume in the intermediate generations, compared to P IP2 = 50%. This could be attributed to

either or both of: (a) over-skew towards convergence, and (b) excessive reliance on an ML-

based operator. However, towards the end generations, the performances with P IP2 = 50%

and P IP2 = 80% are similar. This could be attributed to the adaptive invocations of IP2

operator (through tIP2freq), that eventually led to lesser frequent invocations of IP2 operator in

case of P IP2 = 80%, compared to P IP2 = 50%.



Chapter 4

IP3 Operator for Diversity Enhancement

It has been emphasized earlier that EMO algorithms pursue the dual goals of convergence-to and

diversity-across the true PF . In that, diversity needs to be interpreted in terms of the extent of

spread (coverage across the PF ) and uniformity of distribution within a given spread. It has also

been laid out in Chapter 1, that this thesis aims to propose ML-based operators that could be

invoked at intermittent generations of RV-EMO algorithms, so as to advance or create a fraction

of the offspring solutions, towards improvement in convergence and diversity. While this has

been accomplished in terms of the convergence criterion in the previous chapter, the focus in this

chapter is on enhancing diversity.
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Figure 4.1. A symbolic depiction of how the IP3 operator, aims to advance some Parents in a given

generation (shown in white circles), to create Offspring (shown in green circles) such that they contribute

to expanded spread (denoted by S), and improved uniformity (denoted by U) through association with

some of the otherwise unassociated RVs (R2,R4,R5, andR6).

It has been highlighted in Chapter 1, that this chapter proposes an IP3 operator which re-

49
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lies on: (a) learning the efficient search directions (in X-space) based on a mapping of intra-

generational solutions in F -space, across the reference vectors; and (b) utilizing the learnt di-

rections for creation of a proportion P IP3 of the offspring (in X-space) in that generation. The

justification for P IP3 = 50% has been provided earlier in Section 1.2 (Chapter 1). While the

details of the IP3 operator are presented in subsequent sections, some salient features are high-

lighted upfront, through the Figure 4.1. In that, the parents in an intermediate generation, shown

in white circles, are associated only with a few RVs. IP3 operator aims to advance some of the

parent solutions to create offspring so that they: (i) go beyond the normalized F -space in that gen-

eration, contributing to expanded spread, and (ii) get associated with some of unassociated RVs,

contributing to improved uniformity. Such an advancement of parents, towards better diversity,

is referred to as progression.

This example also reveals a significant feature, that the IP3 based offspring (⌊P IP3N⌋) are

directly created through the advancement of the parents. This is in contrast to the approach

adopted for the IP2 operator, where the first N offspring are created through the natural variation

operators; and ⌊P IP2N⌋ of these are subjected to the IP2 based progression. This difference is

rooted in the overarching objective in this thesis, to avoid extra solution evaluations compared to

the base RV-EMO algorithm. In that:

• the IP2 approach could restrict the number of offspring evaluations to N despite the cre-

ation of ⌊(1+P IP2)N⌋ offspring (N using natural variation operators, and ⌊P IP2N⌋ using

the IP2 operator) because the ⌊P IP2N⌋ naturally created offspring that were subjected to

the IP2 operator could be randomly chosen, doing away with the need for their prior evalua-

tion. Such liberty for random choice was, in turn, available because enhanced convergence

along any subset of RVs, is acceptable.

• an IP2 like approach for IP3 would entail: (a) creation of N offspring solutions by the nat-

ural variation operators, (b) identification of the RVs that remain unassociated with the N

parents and N offspring, combined, and (c) creation of IP3 based offspring (⌊P IP3N⌋), to

cater to the unassociated RVs, besides expansion of spread. Considering that the identifica-

tion of unassociated RVs (step-(b), above) necessitates the prior evaluation of the naturally

created N offspring, this approach would call for a total evaluation of ⌊(1 + P IP3)N⌋ off-

spring solutions, undesirable from a practical perspective. Hence, this approach has been

avoided in this thesis.
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Notably, the salient features highlighted above pertain to those intermittent generations where

the IP3 operator is invoked. It must be re-iterated that, in all such generations of RV-EMO-IP3,

where the IP3 operator is not invoked, the offspring solutions are solely generated by the natural

variation operators, as in the case of base RV-EMO. The above setting guarantees a dominant

contribution of QV across all generations of RV-EMO-IP3, as detailed earlier in Chapter 1, and

symbolically depicted in Figure 4.2.

Source of offspring 

solutions that are 

subjected to selection

Linkage of offspring solutions with the dual 

goals in EMO

Convergence Diversity

RV-EMO 𝑄V

RV-EMO-IP2 𝑄IP2 𝑄V

RV-EMO-IP3 𝑄V 𝑄IP3

Figure 4.2. Symbolic depiction of the convergence-diversity balance across all generations of RV-EMO-

IP3 vis-à-vis RV-EMO-IP2 and base RV-EMO. The offspring solutions created using natural variation

operators QV do not impose any explicit preference for either convergence or diversity.

The remaining chapter is organized as follows: the proposed IP3 operator is detailed in Sec-

tion 4.1, while its integration with NSGA-III, an RV-EMO algorithm, is presented in Section 4.2.

Its computational complexity is highlighted in Section 4.3. Finally, Section 4.4 highlight the

experimental settings, leading up to the presentation of results in Section 4.5.

4.1 Proposed IP3 Operator for Diversity Enhancement

Similar to the IP2 operator, the IP3 operator is constituted by three modules, including Training-

dataset construction, ML training, and Offspring creation. The design and implementation of

these constitutive modules are detailed in the following subsections.

4.1.1 Training-dataset Construction Module

This subsection is further split into three parts, in that, first the mapping requirements are iden-

tified vis-à-vis the end goal of diversity enhancement that the IP3 operator is expected to serve;

then, the training-dataset constitution is proposed; and finally, its algorithmic implementation is

presented.
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4.1.1.1 Deciphering the mapping requirements vis-à-vis the goal of diversity enhancement

It needs to be acknowledged, upfront, that the training-dataset is to be designed in a manner, that

the subsequently trained ML model is able to cater to both – expansion of solutions’ spread and

uniformity of solutions with a given spread.
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Figure 4.3. Depicting the need for objective-wise mapping, towards training-dataset construction.

Reference to Figure 4.3 reveals that no solution is associated with R15, adversely impacting

the uniform distribution. Intuitively, this could be resolved if a trained ML model could help

advance the nearest solution, namely, S5, onto R15. Plausibly, the requirements on the nature

of solutions’ mapping, leading to the training-dataset could be better deciphered, if the desired

advancement could be characterized in terms of the variations in the F values. In this light, the

advancement of S5 onto R15 could be characterized by an improvement in f3 accompanied by

deterioration in f1 and f2. In a different scenario, where S5 may not exist or may not be nearest

to R15, it would be fair to advance the (then) nearest solution to R15, say S7. This advance-

ment could be characterized as an improvement in f1 and deterioration in f2, accompanied by a

constant f3. The difference in the above two characterizations suggests that the mapping require-

ments for diversity enhancement cannot be generalized based on the nature of variation in dif-

ferent objectives. This challenge links to the fact that while traversing across the non-dominated

intra-generational solutions, no transition from one solution to another could be characterized by

improvement or deterioration in all the objectives, and a total of 2M − 2 combinations of partial

improvement/deterioration in the objectives are possible.
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Given the above, it becomes important that the underlying ML models are trained for the high-

est granularity – capable of advancing any given solution towards an improvement in any desired

objective. If such a capability were to exist, then both aspects of diversity can be addressed, as

highlighted below:

• uniform distribution: notably, the above propositions on constructingM datasets, and train-

ing M ML models towards improvement in each objective, provide a common template to

advance any solution onto any unassociated RV, in its neighbourhood. For instance, in the

context of the Figure 4.3, the unassociated RV R15 has multiple solutions in the neigh-

borhood, including, S5, S7, S8, S11, and S12. Hence, (i) the solution nearest to R15 can

be identified, say, S5, (ii) the objective which will undergo maximum improvement, if S5

were to be advanced toR15 can be determined, say fm, and (iii) the mth ML model can be

used to advance S5.

• spread expansion: notably, a given spread of solutions could be expanded if the boundary

solutions are pushed beyond the current envelope of solutions. In this context, consider the

solution S2 in Figure 4.3. The fact that it is a boundary solution can be established by the

fact that one of the components of the underlying RV will be zero. In that, if w21, w22, and

w23 denote that components of R2, then w22 = 0. Now, expanding the spread through S2

calls for its advancement in theX-space, such that in the F -space it marks an improvement

in f2. This could be possible if an ML model trained for improvement in each objective

(including f2) were to exist.

While the above sets the foundation for the proposed training-dataset methodology, it is im-

perative to recognize the uniformity of the RVs used by the RV-EMO algorithm. The commonly

used methods for generating RVs, such as Das and Dennis method [Das and Dennis, 1998], are

computationally inexpensive and provide a uniform set of RVs. While the above holds true in

case of multi-objective problems, in many-objective problems, the RVs generated are only on

the boundary of the F -space and not in the interior. A commonly used alternative for many-

objective problems is the two-layered simple-lattice design (TSLD) [Deb and Jain, 2014]. The

inherent disadvantages of TSLD approach include: (a) more user-defined parameters, and (b)

lower uniformity of RVs. Recently, a newer approach, referred to as incremental lattice design

(ILD), has been proposed which is capable of generating a uniform set of RVs in many-objective

problems covering both the boundary and interior regions [Takagi et al., 2020]. While a small
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non-uniformity (as in TSLD) maybe in acceptable from an algorithmic perspective, it would be

ideal to have an exact uniform distribution of the RVs.

4.1.1.2 Proposed Training-dataset

The above section has highlighted the potential utility of M ML models capable of facilitating

improvement in any objective. This points to the need for M training-datasets, each of which

can be used to train an ML model for improvement in a particular objective. Before detailing

how such datasets could be constituted, this section sheds light on the numerical and conceptual

prerequisites, including:

1. Projection of F -space onto the unit simplex: this recommendation for projecting the solu-

tions (parent population) on to the unit simplex, has been made:

• to ensure that the difference in the convergence levels of different solutions does not

impact the endeavor for diversity improvement, in any manner.

• towards an unbiased assessment, as to which ML model is to be used when advancing

the nearest solution to an unassociated RV. Consider, that one of the unassociated RV

isRi, whose components arewik, where k = 1, . . . ,M . Also consider that the nearest

solution that could be advanced to Ri is Sj , the elements of whose objective-vector

are given by fjk, where k = 1, . . . ,M . Clearly, comparison between the components

of an RV and an objective-vector, and corresponding computation of ∆fk = fjk−wik

can be viable measure for the required improvement in the ith objective only if the

solutions have been projected on the same unit simplex, on which the RVs are sam-

pled. The projected objective values, denoted by F̂ (Xi) ≡ {f̂1(Xi), . . . , f̂M(Xi)},

can be computed from normalized objective values F̄ (Xi) ≡ {f̄1(Xi), . . . , f̄M(Xi)}

(normalization as per Equation 3.1), as below.

f̂m(Xi) =
f̄m(Xi)

ΣM
j=1f̄j(Xi)

∀m ∈ {1, 2, . . . ,M} (4.1)

Hence, if ∆fk = f̂jk − wik is maximum for k = m, it implies that the advancement

of Sj toRi entails a maximum improvement in the mth objective, and hence, the mth

ML model ought to be used.

2. Notion of neighborhood vis-à-vis adjacency of RVs: this section aims to formalize the

notion of neighborhood of a solution, by first establishing the adjacency of any two RVs.
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Since better diversity ideally calls for one solution representative per RV, it is pragmatic to

base the mapping between the solutions that are associated with adjacent RVs. In an ideal

scenario, where the RVs are uniformly distributed on the unit simplex in an exact sense, the

spacing between any two RVs will be constant. However, in a practical scenario, where the

RVs are uniformly distributed only in an approximate sense, the average spacing between

the RVs, referred to as neighborhood-radius (r), can be computed as per the Equation 4.2.

r =
ΣN

i=1{minN
j=1dist(Ri,Rj)}
N

(4.2)

In this background, to facilitate the mapping of solutions between adjacent RVs, the notion

of neighborhood of a solution is introduced. In that, given a solution si, its neighborhood

is defined as Nbd(Si) ≡ {Sj| 0.5r < dist(R(Si), Sj) < 1.5r}, where R(Si) represents

the RV which Si is associated with, and dist represents the euclidean distance. By this

definition, as depicted in Figure 4.4, {Sj, Sk} ∈ Nbd(Si).

ℛ(𝑆𝑖)

𝑆𝑖

𝑆𝑗

𝑆𝑘

ℛ 𝑆𝑗 , ℛ(𝑆𝑘)

Figure 4.4. Symbolic depiction of the neighborhood of a solution vis-à-vis adjacency of RVs.

Proposed Training-dataset construction: With an aim to facilitate M ML models, capable

of advancing any given solution towards an improvement in any desired objective:

• it is natural that M training-datasets are constructed, one-per-objective, say, D1–DM .

• for Dk, that is to serve as the input dataset for training of kth ML model (MLk): it is

proposed that for every solution Si, i = 1 . . . N , its underlying X-vector is mapped on to

the X-vector of another solution Sj ∈ Nbd(Si), such that Sj offers the maximum improve-

ment in f̂k, compared to Si. In effect, Dk captures the pertinent X-space transitions, which

facilitate maximum improvement in f̂k, across all the solutions. Such pertinent X-space

transitions would be learnt by the MLk. This process, repeated over all the objectives,
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would lead to M ML models, capable of advancing any given solution, towards improve-

ment in any desired objective.

Given the above,D1–DM can be seen to correspond to the columns of a matrix S, ideally sized

N×M , such that, its element Sim = {X(Si), X(Sj)−X(Si)}; i = 1 . . . N ;m = 1 . . .M . In that,

Si is an input solution in the F -space; Sj ∈ Nbd(Si) is the target solution that offers maximum

improvement in f̂m; and X(Si) and X(Sj) represent the X-vectors of Si and Sj , respectively.

Notably, the Nbd(Si) may be such that solutions offering improvement in each objective may

not exist. Hence, the matrix S may not be fully populated. For visual depiction of the proposed

training-dataset construction, a three-objective scenario has been presented in the Figure 4.5.

In that, hypothetical solutions projected on the unit simplex, are shown. One of the solutions,

marked as S1 is treated as the input solution; Nbd(S1) has been marked by two dotted circles;

and the solutions S2 and S3 belonging to Nbd(S1) are said to constitute the target cluster C. For

each objective m ∈ {1, 2, 3}, the selection of target solutions from C, is discussed below.

1. m = 1: only one solution S3 offers a better value in f̂1 than S1, and hence is selected as

the target solution.

2. m = 2: both S2 and S3 offer a better value in f̂2 than S1. Among these, S2 is selected as

the target solution since it offers larger improvement in f̂2.

3. m = 3: there is no solution offering a better value in f̂3 than S1, implying no target

solution. Given this, S1 does not contribute to D3.

4.1.1.3 Algorithmic implementation of Training-dataset Construction

In the above background, the overall procedure of constructing D1–DM is summarized in Al-

gorithm 4.1. In that, the first step is the computation of projected objective values F̂ , using

Equation 4.1. Subsequently, each solution Si ∈ Pt is considered as a potential input solution

(line 3, Algorithm 4.1), and subjected to the following steps.

1. Identification of target solution cluster C (lines 4–7, Algorithm 4.1): the target cluster C,

corresponding to an input solution Si, constitutes all such solutions Sj ∈ Pt that belong to

the neighborhood of Si, implying Sj ∈ Nbd(Si).
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Figure 4.5. A schematic representation of the training-dataset construction based on objective-wise map-

ping, within a predefined neighborhood, in the projected F -space. Here, S1 is the input solution, and S2

and S3 constitute the target solutions for different objectives.

2. Identification of the target solutions from C, towards each of D1–DM (lines 8–11, Algo-

rithm 4.1): for each objective m ∈ [1,M ], the solution Sj ∈ C offering the minimum value

of f̂m(Sj), is identified. If the latter is better than f̂m(Si), then the underlying X vectors

are included in the corresponding training-dataset Dm (lines 11–12, Algorithm 4.1).

4.1.2 ML training Module

The goal here is to trainM ML models, over theM training-datasets, such that for each objective

m ∈ [1,M ], an aggregated search direction in X-space promising improvement in f̂m, could be

learnt on the basis of correspondingN promising search directions embedded inDm. Towards it,

k-Nearest Neighbours (kNN) regression7 has been used as the ML method. When a test instance

is provided for prediction, the kNN model identifies its k nearest inputs in the original training-
7The kNN Regressor used in this study has been taken from the Scikit-learn implementation (for python). Link:

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html
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Algorithm 4.1: Dataset Construction(Pt,R, r)
Input: Parent population Pt, RVsR, neighbourhood radius r

Output: M training-datasets D1–DM

1 Compute F̂ values using Equation 4.1

2 {D1,D1, . . . ,DM} ← {∅, ∅, . . . , ∅}

3 for Si ∈ Pt do

4 C ← ∅

5 for Sj ∈ Pt ∀ j ̸= i do

6 if Sj ∈ Nbd(Si) then

7 C ← C ∪ Sj

8 for m = 1 to M do

9 Sj ← argminSj∈C f̂m(Sj)

10 if f̂m(Sj) < f̂m(Si) then

11 Dm ← Dm ∪ [X(Si), (X(Sj)−X(Si))]

dataset, and the average of their respective targets is returned as the prediction [Cover, 1968]. In

the context of Dm, given the X-vector of any solution as a test input: (a) the kNN model (trained

on Dm) identifies its k nearest input solutions in Dm; (b) averages their respective difference

vectors; and (c) returns the average difference vector, which could be treated as a potential search

direction in X-space. Besides the above, the following aspects are noteworthy.

• During the training, the input solutions in Dm are strategically stored using a k-d tree

method [Bentley, 1975], so that while making the prediction for a test input, the corre-

sponding k nearest neighbours can be identified efficiently.

• It is known that a very low value of k leads to overfitting of the kNN, whereas a very

high value of k leads to underfitting. In that, an appropriate choice for k depends on the

dataset and the application it represents. In the context of IP3 operator, k = nvar has

been used, based on the rationale that: (i) the training-dataset, say Dm, involves nvar × 1

dimensional vectors, say,XI andXO for the input and output, respectively, and (ii) given an

nvar× 1 dimensional test-vector (say, XT ), it is appropriate to account for as many nearest-

neighbors (k) of XT among XI , as their are variables, so that even if each neighboring XI

accounts for variation in only one of distinct elements in an nvar × 1 dimensional XT , the

neighboring XIs collectively account for sufficient variation on the input side, so that the



4.1. Proposed IP3 Operator for Diversity Enhancement 59

average of the corresponding XOs does not amount to overfitting. Moreover, a sensitivity

analysis for k has been presented later in Section 4.5.3.

Similar to the IP2 operator, the ML training module is executed as a two-step process: (a)

normalization of the training-dataset using the proposed dynamic normalization method, as a pre-

training step; and (b) the ML training itself, as presented in Algorithm 4.2. Since the kNN model

relies on identification of the k nearest neighbours, it is important that the dataset is normalized

in X-space before training. Here, the above process is repeated M times for training M ML

models. The details of the proposed dynamic normalization method can be found in Section 3.1.2

(Chapter 3).

Algorithm 4.2: ML Training (D, [xl, xu])
Input: Training datasets D, lower & upper bounds of variables specified in the problem, xl and xu

Output: M trained ML models ML1–MLM

1 {xl,t, xu,t} ←Minimum and Maximum of each variable in D

2 xmin, xmax ← ∅, ∅

3 for k = 1 to nvar do

4 xmin
k = 0.5× (xl,t

k + xl
k)

5 xmax
k = 0.5× (xu,t

k + xu
k)

6 Normalize D using xmin and xmax as bounds

7 for m = 1 to M do

8 Train MLm using Dm

4.1.3 Offspring Creation Module

In any generation where IP3 is invoked, this module entails the advancement of a proportion P IP3

of the parent solutions Pt, ⌊P IP3N⌋ in number, leading to offspring which mark an improvement

in both uniformity and spread. In that, ⌊P IP3N/2⌋ offspring, QB
t , are created by subjecting suit-

able Pt members to boundary progression for better spread; and another ⌊P IP3N/2⌋ offspring,

QG
t , are created by subjecting suitable Pt members to gap progression for better uniformity. The

respective procedures are detailed below.
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4.1.3.1 Boundary Progression

The procedure for creating ⌊P IP3N/2⌋ offspring, QB
t , by subjecting suitable Pt members to

boundary progression for better spread, is summarized in Algorithm 4.3. As per the rationale

set up in Section 4.1.1.1, it entails identification of the boundary solutions in the parent popula-

tion Pt, and their advancement using an appropriate ML model to create new offspring solutions.

Algorithm 4.3: Boundary Progression (Pt,R, ML, [xmin, xmax], [xl, xu], P IP3)
Input: Current population Pt, RVsR, ML models ML1–MLm, bounds from Algorithm 4.2 [xmin, xmax],

variable bounds in problem definition [xl, xu], offspring proportion to be created using IP3 PIP3

Output: New solutions created QB
t

1 RB ← All associated RVs inR with at least one ‘0’ component

2 QB
t ← ∅ % sized ⌊PIP3N/2⌋ × nvar

3 for i = 1 to ⌊PIP3N/2⌋ do

4 B⃗ ← A randomly selected RV fromRB

5 Sstart ← Nearest solution associated with B⃗

6 m← A randomly selected objective such that B⃗m = 0

7 X̄(Sstart)← Normalized X(Sstart) using xmin and xmax

8 d̄X ←MLm(X̄(Sstart))

9 dX ← Denormalized d̄X using xmin and xmax

10 X(Snew)← X(Sstart) + λB × d̂X

11 Boundary repair on X(Snew)

12 QB
t ← QB

t ∪ Snew

The boundary solutions in Pt can be characterized as those associated with boundary RVs,

implying RVs having at least one ‘0’ component (wi = 0 for some i ∈ [1,M ]). To facilitate access

to such boundary solutions, in algorithmic implementation, let the boundary RVs which have at

least one member of Pt, associated with themselves, be denoted by RB (line 1, Algorithm 4.3).

Subsequently, the creation of each offspring in QB
t , involves the following steps.

1. Identification of the solution to be advanced (lines 4–5, Algorithm 4.3): an RV B⃗ is ran-

domly selected from RB. If there is only one solution associated with B⃗, it is identified

as the desired solution, denoted as Sstart. Otherwise, if there are more than one solutions

associated with B⃗, the solution nearest to B⃗ by perpendicular distance is identified as Sstart.
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2. Selection of an appropriate ML model (line 6, Algorithm 4.3): the solution Sstart identified

above for advancement, can be characterized by the fact that it offers one of the best values

in at least one particular objective. For instance, if the jth component of Sstart’s underlying

B⃗ is 0, it implies that Sstart offers one of the best values in the jth objective, and that

further improvement in the jth objective would imply boundary expansion (beyond the

current projected F -space.). In case more than one components of B⃗ are 0, then one of

them, say indexed as m, is randomly picked, and the corresponding ML model, namely,

MLm becomes the desired ML model.

3. Obtaining the search direction (lines 7–9, Algorithm 4.3): as highlighted earlier in Sec-

tion 4.1.2, given the X-vector of a solution, the trained model MLm is capable of provid-

ing a potential search direction in X-space. Hence, a search direction corresponding to

Sstart, denoted by dX , could be obtained by applying MLm on X(Sstart). However, since

MLm was trained on the normalized dataset: (i)X(Sstart) needs to be normalized using the

bounds computed in Algorithm 4.2, before applying MLm; and (ii) the normalized search

direction obtained by applying MLm, denoted by d̄X , needs to be denormalized using the

same bounds, leading to dX .

4. Advancement and repair (lines 10–11, Algorithm 4.3): the advancement of Sstart leading

to Snew, can be given by X(Snew) = X(Sstart) + λB × d̂X , where d̂X is a unit vector

along the search direction dX (computed above), and λB is the step length. Towards the

determination of λB, the desired scaling in F -space for boundary progression needs to be

imposed on the relationship of scales in F -space and X-space that is inherent in the ML

training-dataset, as discussed below:

(a) the scaling requirements in the F -space, say in multiple of r, where r represents

the average distance between two adjacent RVs. In a hypothetical situation, if the

spread in F -space is desired to double-up compared to the current spread, it could

be achieved with reference to the unit simplex, by accounting for the product of: (i)

the average distance between any two adjacent RVs in the unit simplex, given by

r, and (ii) the number of adjacent-RV transitions required to span the boundary of

the unit simplex, given by ⌊
√
2/r⌉. Reference may be made to Figure 4.6a, that

symbolically depicts the projected F -space with 5 equi-spaced RVs (R1–R5) and

associated solutions. In order to span the boundary, i.e., to move from one extreme



62 4. IP3 Operator for Diversity Enhancement

RV (R1) to another extreme RV (R5), the number of adjacent-RV transitions required

are given by
√
2/r = 4. Notably, there may be scenarios where the RVs are not

exactly equi-spaced, leading to a non-integral value of
√
2/r. Hence, ⌊

√
2/r⌉ is used.

In effect, to double-up the current spread, a scaling factor of ⌊
√
2/r⌉ × r is required

in the projected F -space.
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Figure 4.6. A symbolic depiction of distance between two solutions associated with adjacent RVs.

(b) the inherent relationship of scales in F -space andX-space in the ML training-dataset.

In that, consider two solutions α and β as associated with adjacent RVs (as depicted in

Figure 4.6a). While in the F -space, they can be reasonably assumed to be separated

by a distance r; their distance in theX-space can be given by ∥d∥, where d ≡ Xβ−Xα

(as depicted in Figure 4.6b). Such ∥d∥ can be computed for the solutions associated

with all the pairwise adjacent RVs, and an average value of ∥dA∥ can be arrived at.

Now, considering that the required scaling factor to double-up the spread in the F -

space is ⌊
√
2/r⌉ × r, the corresponding step length in the X-space can be given by

λB = ⌊
√
2/r⌉×∥dA∥, where ∥dA∥ is the average of ∥d∥ over the solutions associated

with all the pairwise adjacent RVs.

While the founding principles of the scaling factor in the F -space, and the step length

in the X-space are presented above, the actual scaling factor and step length need to be

adapted, so that they can cater to the varying scope for spread expansion, along the RV-

EMO generations. In that:

• during the early generations of an RV-EMO algorithm, the current spread may be only
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a minor fraction of the targeted PF spread, and a large scaling factor may be desired

to cater to the large scope for spread expansion,

• during the later generations, where the actual spread may be comparable to the tar-

geted PF spread, and a small scaling factor may be desired to cater to the limited

scope for spread expansion.

To account for such varying requirements, it is important to: (i) impose an upper and lower

bound on the scaling factor, and (ii) infuse randomness while assigning an intermediate

value to it (since the scope for spread expansion cannot be determined a priori). Consid-

ering such requirements, this thesis proposes that the upper bound for the scaling factor

be based on doubling the current spread, while the lower bound and intermediate values

can be obtained through a randomized scalar. Considering the above modifications to the

scaling factor (in F -space), the corresponding step length (in X-space) can be given by

λB = rand(0, 1)× ⌊
√
2/r⌉ × ∥dA∥. Notably, the obtained X(Snew) may have some vari-

ables outside their respective permissible bounds. These variables are repaired using the

method proposed in [Padhye et al., 2013], which is the same as used in the IP2 operator.

𝑓1

𝑓 2

ℛ1

Current projected 

objective space

ℛ2

ℛ3
ℛ4ℛ5

Unit

simplex

Maximum

Progression

Moderate

Progression

𝑆5

𝑆1

𝑆2

𝑆3

𝑆4

Figure 4.7. A symbolic depiction of the boundary progression, during an RV-EMO-IP3 run.

Finally, the key features of the boundary progression procedure are symbolically depicted

in Figure 4.7. In that, the projected F -space at an intermediate generation of an RV-EMO-

IP3 run is shown. This space is discretized through 5 equi-spaced RVs (R1–R5), whose

associated parent solutions are marked. Since R1 and R5 are the only boundary RVs,
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only S1 and S5 can be used for boundary progression. Notably, the maximum progression

corresponding to rand(0, 1) = 1, implying a scaling factor of ⌊
√
2/r⌉ × r, is depicted by

the green arrow. Further, the moderate progression corresponding to an intermediate value

of rand(0, 1), implying a scaling factor of < ⌊
√
2/r⌉ × r, is depicted by the red arrows.

While the above steps are repeated ⌊P IP3N/2⌋ times for creation of ⌊P IP3N/2⌋ offspring, the

random selection of the boundary solutions and their respective progression with a random step

length ensures that, across the generations, the spread expansion is fairly emphasized on all

boundaries.

4.1.3.2 Gap Progression

The procedure for creating ⌊P IP3N/2⌋ offspring, QG
t , by subjecting suitable Pt members to gap

progression for better uniformity, is summarized in Algorithm 4.4. As per the rationale set up

in Section 4.1.1.1, it entails identification of the unassociated RVs, and the advancement of their

respective nearest solutions in Pt to create new offspring solutions, using an appropriate ML

model. The unassociated RVs can simply be characterized as those with no solution in Pt associ-

ated with them. To facilitate their access, in algorithmic implementation, they are denoted asRG

(line 1, Algorithm 4.4). Subsequently, the creation of each offspring solution in QG
t , involves the

following steps.

1. Identification of the solution to be advanced (lines 4–5, Algorithm 4.4): an RV G⃗ is ran-

domly selected fromRG. The solution nearest to G⃗ (by perpendicular distance) is identified

as the solution to be advanced, and denoted as Sstart. Notably, Sstart will be associated with

some other RV than G⃗, since G⃗ is an unassociated RV.

2. Selection of an appropriate ML model (lines 6–7, Algorithm 4.4): as per the rationale set

earlier in Section 4.1.1.1, Sstart can be advanced to G⃗ by improving the particular objective

requiring maximum improvement, say ∆fi. Alternatively, Sstart may require maximum

deterioration in a particular objective to advance to G⃗, say ∆fj . Plausibly: (i) ∆fi ≥ ∆fj ,

where the model MLi can be applied to improve Sstart in the ith objective; and (ii) ∆fi <

∆fj , where the model MLj can be applied, with a minor adaptation, to deteriorate Sstart

in the jth objective. As per the case applicable, m = i or j, and the corresponding model

is referred to as MLm.
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Algorithm 4.4: Gap Progression (Pt,R, ML, [xmin, xmax], [xl, xu]), P IP3

Input: Current population Pt, RVsR, ML models ML1–MLM , bounds from Algorithm 4.2 [xmin, xmax],

variable bounds in problem definition [xl, xu], offspring proportion to be created using IP3 PIP3

Output: New solutions created QG
t

1 RG ← All empty RVs inR

2 QG
t ← ∅ % sized ⌊PIP3N/2⌋ × nvar

3 for i = 1 to ⌊PIP3N/2⌋ do

4 G⃗← A randomly selected RV fromRG

5 Sstart ← Nearest solution to G⃗ % associated with some other vector

6 δ⃗ ← G⃗− F̂ (Sstart)

7 m← argmaxm∈[1,M ](abs(δ⃗))

8 X̄(Sstart)← Normalized X(Sstart) using xmin and xmax

9 if δ⃗m < 0 then

10 d̄X ←MLm(X̄(Sstart))

11 else

12 d̄X ← −1×MLm(X̄(Sstart))

13 dX ← Denormalized d̄X using xmin and xmax

14 X(Snew)← X(Sstart) + λG × d̂X

15 Boundary repair on X(Snew)

16 QG
t ← QG

t ∪ Snew

3. Obtaining the search direction (lines 8–13, Algorithm 4.4): as highlighted earlier in Sec-

tion 4.1.2, MLm applied on to X(Sstart) provides a potential search direction in X-space,

say, dX . Since MLm was trained on the normalized dataset: (i) X(Sstart) needs to be

normalized using the bounds computed in Algorithm 4.2, before applying MLm; and (ii)

the normalized search direction obtained by applying MLm, denoted by d̄X , needs to be

denormalized using the same bounds, leading to dX . Notably, by default, MLm aims to

provide improvement in the mth objective. Hence, if deterioration is required in the mth

objective, MLm is applied with a minor adaptation. In that, the obtained search direction

(d̄X) is reversed by multiplying each of its components with (−1), as depicted in line 12

(Algorithm 4.4).

4. Advancement and repair (lines 14–15, Algorithm 4.4): the advancement of Sstart, leading

to Snew, can be given by X(Snew) = X(Sstart) + λG × d̂X , where d̂X is a unit vector along

dX (computed above), and λG is the step length. In the context of boundary progression,
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the founding principles enabling computation of the scaling factor and the step length were

laid down. These principles apply, as such, in the context of gap progression too, just that

the specific formulations differ owing to the contextual difference, as evident below.

(a) the scaling requirements in the F -space, say in multiple of r, where r represents the

average distance between two adjacent RVs. Intuitively, given a solution Sstart to

be advanced to an unassociated RV G⃗, the appropriate scaling could be achieved with

reference to the unit simplex, by accounting for the product of: (i) the average distance

between any two adjacent RVs in the unit simplex, given by r; and (ii) the number

of adjacent-RV transitions required to arrive at G⃗ from F̂ (Sstart), given by ⌊∥δ⃗∥/r⌉,

where δ⃗ ≡ G⃗ − F̂ (Sstart). Reference may be made to Figure 4.8, that symbolically
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Figure 4.8. A symbolic depiction of the gap progression, during an RV-EMO-IP3 run.

depicts the projected F -space with 8 equi-spaced RVs (R1–R8), where R4–R6 are

unassociated. To depict the advancement of solutions onto adjacent and non-adjacent

RVs, two instances are highlighted by green arrows, including:

• advancement of solution S3 to non-adjacent R5: ∥δ⃗3∥ marked in the figure im-

plies ∥δ⃗3∥/r = 2. Notably, S3 may lie within a distance of 0.5r on either side of

R3 (depicted by the engulfing rectangle). Hence, in general, a non-integral value

of ∥δ⃗3∥/r may result, necessitating the use of ⌊∥δ⃗∥/r⌉.

• advancement of solution S7 to adjacent R6: ∥δ⃗7∥ marked in the figure implies

⌊∥δ⃗7∥/r⌉ = 1. Notably, S7 may lie within a distance of 0.5r on either side

of R7 (depicted by the engulfing rectangle). Yet, regardless of S7’s location,

⌊∥δ⃗7∥/r⌉ = 1 would hold.
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In effect, it is fair to infer that a scaling factor of ⌊∥δ⃗∥/r⌉ × r is required in the

projected F -space.

(b) the inherent relationship of scales in F -space andX-space in the ML training-dataset,

as discussed earlier in reference to the boundary progression. In that, computation of

average spacing in X-space, given by ∥dA∥, has also been discussed. Hence, con-

sidering the scaling required in F -space for gap progression, the corresponding step

length in the X-space can be given by ⌊∥δ⃗∥/r⌉ × ∥dA∥.

While the founding principles of the scaling factor (in F -space) and the step length (in X-

space) are presented above, the actual scaling factor and corresponding step length needs to

be adapted, so it can cater to the uncertainty around Sstart’s location vis-à-vis its underlying

RV. Since this uncertainty is limited to a range of±0.5r about the underlying RV, this thesis

postulates that the desired step length be given by λG = rand(⌊∥δ⃗∥/r⌉ − 0.5, ⌊∥δ⃗∥/r⌉ +

0.5)×∥dA∥. Notably, the obtained X(Snew) may have some variables outside their respec-

tive permissible bounds, that are repaired using the same method [Padhye et al., 2013], as

used in the boundary progression.

While the above steps are repeated ⌊P IP3N/2⌋ times for creating ⌊P IP3N/2⌋ offspring solu-

tions, the random selection of the unassociated RVs ensures that each identified gap in the current

population is fairly emphasized.

4.2 Integration of IP3 operator into NSGA-III

This section outlines the integration of the IP3 operator with NSGA-III, leading to NSGA-III-

IP3. This integration, summarized in Algorithm 4.5 is generic in nature, and can be extended to

any other RV-EMO algorithm.

Notably, Algorithm 4.5 represents any intermediate generation t of NSGA-III-IP3, and in-

volves a new parameter, namely, tIP3freq, that specifies the number of generations between two

successive progressions. First, it is checked if the population has mildly stabilized for the first

time (line 1, Algorithm 4.5). For its detection, a stabilization tracking algorithm [Saxena and

Kapoor, 2019] has been used8. If detected, the startIP3 flag is marked as True (lines 2–3, Al-

gorithm 4.5). Until this flag is marked, the IP3 operator is not invoked at all. It is crucial to let

8This stabilization tracking algorithm can be used for: (a) triggering the IP3 operator with a mild setting, and (b)

terminate the NSGA-III-IP3 run with a strict setting.
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Algorithm 4.5: Generation t of NSGA-III-IP3
Input: RV setR, original variable bounds [xl, xu], Parent population Pt, frequency of progression tIP3

freq,

generation of last progression tIP3
pg , neighbourhood radius r, number of survived offspring in

(t− 1)th generation N survived
t−1

Output: Pt+1, tIP3
pg , tIP3

freq, N survived
t

1 check ← Check Mild Stabilization()

2 if check then

3 startIP3 = True

4 if startIP3 and t− tIP3
pg = tIP3

freq then

5 D ← Dataset Construction(Pt,R, r)

6 ML, [xmin, xmax]← Training(D, [xl, xu])

7 QB
t ← Boundary Progression (Pt,R, ML, [xmin, xmax], [xl, xu], PIP3) % ⌊PIP3N/2⌋

8 QG
t ← Gap Progression (Pt,R, ML, [xmin, xmax], [xl, xu], PIP3) % ⌊PIP3N/2⌋

9 QV
t ← Variation(Pt) % ⌈(1− PIP3)N⌉

10 Qt ← QB
t ∪QG

t ∪QV
t % N

11 tIP3
pg ← t

12 else

13 Qt ← Variation(Pt) % N

14 Evaluate Qt

15 Pt+1 ← Survival selection(Pt ∪Qt)

16 N survived
t ← sizeof(Qt ∩ Pt+1)

17 if t = tIP3
pg then

18 if N survived
t > N survived

t−1 then

19 tIP3
freq ← tIP3

freq − 1

20 if N survived
t < N survived

t−1 then

21 tIP3
freq ← tIP3

freq + 1

the population stabilize a little before applying the IP3 operator since focusing excessively on

diversity enhancement before the population has mildly converged may lead to a delayed conver-

gence, at the cost of additional computational expense. In other words, NSGA-III-IP3 is identical

to base NSGA-III till the generation in which mild stabilization is detected. Notably, the underly-

ing stabilization tracking algorithm requires an additional parameter set (ψmild) to detect the mild

stabilization, as discussed later in Section 4.4.3.2.

In the subsequent generations, if tIP3freq generations have passed after the last invoked progres-

sion in generation tIP3pg , the IP3 operator is invoked (line 4, Algorithm 4.5). If invoked: the M
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training datasetsD1–DM are constructed using Algorithm 4.1; M ML models are trained onD1–

DM using Algorithm 4.2; ⌊P IP3N/2⌋ offspring solutions are created by each of Algorithms 4.3

and 4.4, and remaining ⌈(1− P IP3)N⌉ offspring solutions are created using the variation opera-

tors (crossover and mutation in this case); and the offspring solutions created by all three methods

are combined into N sized Qt (lines 4–11, Algorithm 4.5). Otherwise, if the IP3 operator is not

invoked, N offspring are created directly using the variation operators, as in the case of base

NSGA-III (lines 12–13, Algorithm 4.5). Subsequently, all N offspring solutions are evaluated

and NSGA-III’s survival selection procedure is executed (lines 14–15, Algorithm 4.5). Towards

the end, the count of offspring that survived to the next generation (N survived
t ) is estimated (line

16, Algorithm 4.5). If this count has improved compared to the previous generation, implying

a good performance of the IP3 operator, then tIP3freq is reduced by 1, implying a more frequent

progression. However, if this count has degraded, implying a poorer performance of the IP3

operator, tIP3freq is increased by 1 implying a less frequent progression. This adaptation is only exe-

cuted in generations where IP3 is invoked (line 17, Algorithm 4.5). Notably, in absence of gaps in

the population, i.e., if no RVs are unassociated, then the ⌊P IP3N/2⌋ offspring solutions created

using gap progression, are created using boundary progression, ensuring that overall ⌊P IP3N⌋

offspring solutions are created using the IP3 operator.

4.3 Computational Complexity of IP3 operator

As detailed in the section above, the proposed IP3 operator is constituted by three modules. In the

following subsections, time and space complexity of each constituent module has been discussed,

followed by its overall summary.

4.3.1 Training-datasets Construction Module

The process of constructing M training-datsets D1–DM has been summarized in Algorithm 4.1.

In that, for each solution of Pt, first the target solutions cluster is identified which requires N

computations and then, the target solutions are picked for each dataset, which requires M ×

M computations. Collectively, this procedure is repeated for each solution in Pt (sized N ).

Given that the above procedure is repeated for N solutions, the resulting time complexity is

max{O(N2),O(NM2))}. Generally, the population sizes N used in RV-EMO algorithms (as

also used in this thesis) satisfy N ≥ M2. Hence, the resulting time complexity of this module
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can be approximated as O(N2).

Further, only the training-datasets D1–DM are additionally created, over base NSGA-III al-

gorithm. Each dataset in D can have a maximum of N mapped pairs of solutions, considering

which, the resulting space complexity of this module is O(MN).

4.3.2 ML Training Module

The training-datasets constructed above are used to train M kNN regressor models in this mod-

ule. The worst case time complexity of training a kNN model is O(NdimNsam log(Nsam)), where

Ndim denotes the dimensionality of the training-dataset and Nsam denotes the number of sam-

ples. Similarly, the worst case space complexity of the kNN is O(NdimNsam). In this case,

Ndim = nvar, max(Nsam) = N , and M trainings are executed. Upon substituting their values, the

resulting time and space complexities of the ML training module are O(MNnvar log(N)) and

O(MNnvar), respectively.

4.3.3 Offspring Creation Module

Evidently, this module constitutes two submodules, each of which follow the same procedure

from the computational complexity perspective. Hence, a common discussion is presented here.

Each submodule is executed through four steps: (a) identification of the solution to be advanced;

(b) selection of the ML model; (c) identification of the search direction; and (d) advancement

and repair. The worst case computational complexity of step-(a) is O(MN), owing to the iden-

tification of the nearest solution to a given RV. Step-(b) requires M +M computations, leading

to a complexity of O(M). Step-(c) involves making a prediction using one of the learnt kNN

models. The prediction time complexity of a kNN model is O(kNsam), where k is the number of

neighbours. Since k = nvar has been used, the resulting time complexity of making a prediction is

O(Nnvar). Finally, step-(d) involves the advancement of a given solution withO(M) complexity.

Amongst the four steps, the worst time complexity can be given as max{O(MN),O(Nnvar)}.

Generally, nvar > M is majority of the MOPs. Hence, the worst case time complexity can be ap-

proximated as O(Nnvar). Since, these steps are repeated for ⌊P IP3N/2⌋ solutions, the resulting

time complexity becomes O(N2nvar). Moreover, since the offspring solutions created through

advancement at included in theN offspring solutions that are created by any RV-EMO algorithm,

there is no related space complexity of this module.
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The worst case time complexity and space complexity of each constituent module of the IP3

operator is summarized in Table 4.1. Evidently, training of M kNN models have the highest time

complexity, and the M trained kNN models have the highest space complexity.

Table 4.1. Time- and space-complexities of different modules of the IP3 operator

Module Time-complexity Space-complexity

Training-dataset construction O(N2) O(MN)

ML training O(MNnvar log(N)) O(MNnvar)

Offspring creation O(N2nvar) –

4.4 Experimental Setup

This section sets the foundation for experimental investigation, by highlighting the: (a) test-suite

considered, (b) performance indicators used and related statistical analysis, and (c) parameters

pertaining to the RV-EMO algorithm(s) and the IP3 operator.

4.4.1 Test-suite

To demonstrate the search efficacy infused by the IP3 operator into an RV-EMO algorithm, sev-

eral two- and three-objective problems with varying degrees of difficulty have been used. These

include: CIBN [Lin et al., 2017], DASCMOP [Fan et al., 2020] and MW [Ma and Wang, 2019]

problems with the following specifications.

• CIBN: CIBN1–3 are two-objective and CIBN4–5 are three-objective, with nvar = 10.

• DASCMOP: DASCMOP1–6 are two-objective problems and DASCMOP7–9 are three-

objective problems, with nvar = 30. Since different difficulty settings are available for

these problems [Fan et al., 2020], setting 5 has been used here that corresponds to diversity-

hardness in these problems.

• MW: majority of these problems are two-objective, except for MW4, MW8 and MW14

that are three-objective. Here, nvar = 15 for all problems MW1–14.

Notably, all these test problems have been proposed in recent years, and are diversity-hard

due to the presence of multiple constraints. Standard EMO algorithms, such NSGA-III, that rely
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on the constraint dominance principle for handling constraints, exhibit severe under-performance

on some of these problems [Ma et al., 2021].

4.4.2 Performance Indicators and Statistical Analysis

The choice of performance indicators is exactly the same as adopted earlier in Chapter 3. The

key details are re-iterated below.

• Hypervolume is used the primary indicator with reference point set as R1×M = [1 +

1
p
, . . . , 1 + 1

p
], where p is the number of gaps set for the Das-Dennis method while gen-

erating the RVs for RV-EMO. Further, for the problems where the scales of different ob-

jectives are different, the solutions are normalized in the F -space using the theoretical PF

extremes.

• Population mean of the g(X) function is used as the secondary indicator, to provide insights

into the convergence levels in the X-space. Although the IP3 operator focuses explicitly

on diversity-enhancement, it would be intriguing to assess if there is an adverse impact on

the convergence of solutions.

Further, in the context of the statistical analysis on these performance indicators,

• when comparing only two algorithms, at a time, Wilcoxon ranksum test [Wilcoxon, 1945]

is performed on the indicator values reported over multiple/independently seeded runs. In

that, the threshold value of 0.05 (95% confidence interval) is used.

• when comparing more than two algorithms, at a time, Kruskal-Wallis test [Kruskal and

Wallis, 1952] with threshold p-value of 0.05 is used, to infer if their overall differences are

statistically insignificant or not. If not, the Wilcoxon ranksum test is used for their pair-

wise comparisons, when the algorithm reporting the best median hypervolume is treated

as reference. Furthermore, the threshold p-value is adjusted using the standard Bonferroni

correction [Abdi, 2007], to retain the same overall confidence.

4.4.3 Parameter Settings

In this subsection, the parameters and settings used for: (a) the RV-EMO algorithm, i.e., NSGA-

III; and (b) the IP3 operator, i.e., P IP3, r, tIP3freq, ηj and ψmild, have been discussed.
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4.4.3.1 RV-EMO Settings

These settings have been kept exactly the same as used for the IP2 operator in Chapter 3. The

key details are re-iterated below.

• For generating RVs, Das-Dennis method has been used, with: (a) p = 99 for M = 2,

leading to N = 100 and (b) p = 13 for M = 3, leading to N = 105.

• The natural variation operators include: (a) SBX crossover, with pc = 0.9 and ηc = 20, and

(b) polynomial mutation, with pc = 1/nvar and ηm = 20.

• Each of NSGA-III and NSGA-III-IP3 has been run for 31 times, with random seeds.

• For NSGA-III-IP3, tterm has been determined on-the-fly through the stabilization tracking

algorithm, using ψterm ≡ {3, 50}. For NSGA-III, the mean tterm determined for NSGA-

III-IP3 over 31 runs has been used as the tterm.

4.4.3.2 IP3 Operator Settings

The proposed IP3 operator involves five parameters: P IP3, r, tIP3freq, and ψmild. In that: P IP3 refers

to the proportion of the total offspring (N ) created using the IP3 operator; the neighbourhood-

radius r governs the identification of the target solutions cluster during the mapping; tIP3freq controls

the invocations of the IP3 operator; and ψmild (similar to ψterm) governs the degree of stabilization

required to trigger the first invocation of the IP3 operator during an RV-EMO-IP3 run.

P IP3 = 50% has been used, as reasoned earlier in Section 1.2 (Chapter 1). r is simply

derived from the given RV set R (Equation 4.2), and tIP3freq has been adapted on-the-fly based on

the survival of the offspring, as can be observed in Algorithm 4.5. The initial value of tIP3freq is set

as 1. While the first three (out of four) parameters could be rationally derived or adapted, a direct

impact of ψmild on the performance of the IP3 operator is not that straight.

As mentioned above, ψmild governs the degree of stabilization required to trigger the first

invocation of the IP3 operator. While it is intuitive that ψmild should correspond to a lower degree

of stabilization than ψterm that is used to terminate the NSGA-III-IP3 run, its exact setting is

borrowed from the suggestion made in [Saxena and Kapoor, 2019]. According to that, the mild

stabilization corresponds to ψmild = {2, 20}.
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4.5 Experimental Results

This section compares the performance of NSGA-III-IP3 vis-à-vis NSGA-III, that includes: (a)

an assessment of the general performance trends on a wide range of test problems; and (b) an

investigation on some sample two- and three-objective problems. Towards the end, an assess-

ment of the IP3 operator’s performance sensitivity towards the variation in k (used for kNN, the

underlying ML method), has been presented.

4.5.1 General trends

As highlighted earlier, hypervolume has been used as the primary performance indicator, sup-

ported by the g(X) function values for further insights. In this background, Table 4.2 reports the

median hypervolume and median g(X) values, from among the 31 randomly seeded runs at the

end of tterm generations. In that, tterm has been determined on-the-fly for NSGA-III-IP3, and the

same has been used for NSGA-III. From this table, the following can be observed.

• In terms of hypervolume: NSGA-III-IP3 performs either statistically better than or equiv-

alent to NSGA-III in 27 out of 28 test instances.

• In terms of g(X) values: NSGA-III-IP3 performed either statistically better than or equiv-

alent to NSGA-III in only 21 out of 28 instances, whereas NSGA-III performed either

statistically better than or equivalent to NSGA-III-IP3 in 24 out of 28 instances.

The preliminary conclusion from the above trends is that overall, NSGA-III-IP3 performed

better in hypervolume but worse in g(X) values, than NSGA-III. While the latter could be at-

tributed to the partial shift in focus of offspring creation (due to IP3 operator) towards diversity-

enhancement, the former suggests that the improvement in diversity was significantly higher than

the loss in convergence, leading to better hypervolume values. This clearly endorses the search

efficacy infused by the IP3 operator into NSGA-III, towards diversity-enhancement.

4.5.2 Insights into sample two- and three-objective problems

For further insights into the performance of IP3 operator, some sample test instances have been

chosen for discussion, including: (a) CIBN1 – a two-objective problem where NSGA-III fails to

achieve a reasonable PF approximation; (b) MW12 – a two-objective problem where NSGA-III
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Table 4.2. Hypervolume and g(X) based comparison of NSGA-III and NSGA-III-IP3 on benchmark

CIBN, DASCMOP and MW problems, at tterm generations determined on-the-fly for NSGA-III-IP3 using

a stabilization tracking algorithm. Each row shows the median hypervolume and g(X) values at the end of

tterm generations. The best performing algorithm and its statistical equivalent are marked in bold. Note:

UPS denotes the Pareto-set of the unconstrained MOP.

Problem tterm
Median hypervolume Median g(X)

NSGA-III NSGA-III-IP3 p-value g(X)|X∈UPS NSGA-III NSGA-III-IP3 p-value

M
=

2

CIBN1 1404 0.328355 0.483381 1.34E-11 0 0.000581 0.001742 1.34E-11

CIBN2 753 0.655604 0.669094 2.89E-11 0 0.003847 0.002461 1.48E-09

CIBN3 889 0.213285 0.219149 1.34E-11 0 0.003371 0.003022 1.05E-04

DASCMOP1 1948 0.089614 0.31699 3.22E-09 0 0.000266 0.004733 1.34E-11

DASCMOP2 1793 0.414381 0.637702 1.34E-11 0 0.000292 0.012345 1.34E-11

DASCMOP3 1639 0.391362 0.39416 4.95E-02 0 0.000525 0.000899 1.66E-01

DASCMOP4 1978 0.336838 0.336812 7.95E-01 0 0.000149 0.000158 8.60E-01

DASCMOP5 2101 0.672598 0.672677 3.21E-01 0 0.000136 0.000129 9.61E-01

DASCMOP6 2377 0.549901 0.574818 2.53E-03 0 0.000093 0.000072 6.83E-02

MW1 1047 0.415296 0.415318 4.68E-01 1 1.000057 1.000034 1.13E-01

MW2 836 0.482964 0.482899 7.95E-01 1 1.020645 1.020625 9.49E-01

MW3 875 0.469838 0.469803 5.54E-01 1 1.041892 1.043891 1.23E-03

MW5 1821 0.083018 0.197173 1.86E-04 1 1.000027 1.000176 1.81E-05

MW6 1229 0.298354 0.298348 9.94E-01 1 1.026767 1.026708 9.61E-01

MW7 892 0.366328 0.366413 5.59E-01 1 1.094907 1.096497 1.53E-01

MW9 1071 0.293771 0.29641 7.47E-04 1 1.452991 1.42566 1.48E-09

MW10 1063 0.246928 0.247365 8.38E-01 1 1.049239 1.05019 8.82E-01

MW11 961 0.268168 0.259526 2.66E-02 1 1.277597 1.243012 7.04E-02

MW12 1068 0.570536 0.570814 3.81E-03 1 1.246089 1.249201 3.65E-03

MW13 972 0.328753 0.328191 7.41E-01 1 1.069005 1.072882 4.68E-01

M
=

3

CIBN4 438 0.912571 0.917063 9.39E-03 0 0.012301 0.014547 1.01E-03

CIBN5 287 0.629831 0.629746 6.07E-01 0 0.008496 0.008635 5.40E-01

DASCMOP7 1693 1.02602 1.025306 5.31E-01 0 0.001225 0.001369 6.27E-01

DASCMOP8 1650 0.628281 0.658097 1.02E-02 0 0.010428 0.001833 1.15E-02

DASCMOP9 1539 0.346689 0.647012 1.34E-11 0 0.004983 0.005401 2.34E-01

MW4 743 1.041376 1.041362 7.09E-01 1 1.000239 1.000337 4.68E-01

MW8 718 0.626856 0.626362 9.49E-01 1 1.014327 1.014104 7.51E-01

MW14 914 0.154225 0.158839 2.13E-01 1 1.016592 1.017586 9.83E-01

Total −→ 15 27 of 28 probs. 24 21 of 28 probs.

achieves a reasonable PF approximation; and (c) DASCMOP9 – a three objective problem, as

presented below.
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4.5.2.1 CIBN1 Problem (M = 2)

Here, the CIBN1 problem is chosen for a sample discussion on a two-objective problem where

NSGA-III fails to achieve a reasonable PF -approximation. Figure 4.9 shows the final set of

solutions obtained in the respective median runs of NSGA-III and NSGA-III-IP3 (out of 31 ran-

domly seeded runs each). The termination generation tterm has been set as 1404 for NSGA-III, as

determined on-the-fly for NSGA-III-IP3. As evident, this presents an instance where NSGA-III

could not offer a good PF -approximation since the obtained spread of solutions is only a subset

of the actual spread of the PF . Hence, as per the premise for interpretation of the results, laid

earlier (Chapter 2, Section 2.5), such a scenario points to the possibility of improvement in the

quality of the PF approximation.
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Figure 4.9. Final obtained solutions in the respective median runs of NSGA-III and NSGA-III-IP3 on

CIBN1 problem.

As can be observed in Figure 4.9, NSGA-III-IP3 clearly achieved a better PF approximation

than NSGA-III. Even though NSGA-III-IP3 could not achieve the desired spread across the true

PF , the improvement in the spread of solutions over NSGA-III could only be attributed to the

search efficacy infused by the IP3 operator towards diversity-enhancement.

For further insights into the performance, Figures 4.10a and 4.10b show the generation-wise

median hypervolume and median g(X) plots, respectively. In that, there is a significant im-

provement in the hypervolume, but a slight deterioration in the g(X) value, suggesting a slightly

poorer convergence of NSGA-III-IP3. However, the improvement in hypervolume suggests that

the better diversity across the PF compensates and overcomes the loss in convergence to the

PF . Moreover, it can be observed that even at tterm = 1404, the hypervolume measures for
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NSGA-III-IP3 could not stabilize. This suggests that even though the population had stabilized

as per the termination criterion defined, and the NSGA-III-IP3 run should have been terminated

from a practical perspective, there was a scope of further improvement in spread across the PF .
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Figure 4.10. Generation-wise performance of NSGA-III and NSGA-III-IP3 on CIBN1.

It may be noted that the IP3 operator attempts to cater to both aspects of diversity-enhancement,

i.e., spread expansion and uniformity within the spread. While the first aspect has clearly been

demonstrated through the discussion presented above in the context of CIBN1 problem, it is im-

perative to gather insights into the performance of IP3 operator in terms of achieving a better

uniformity of solutions within a given spread. Towards it, the parent solutions in the genera-

tion tmild = 178, right before the IP3 operator is invoked for the first time, are shown in Fig-

ure 4.11a; and the parent solutions at a subsequent arbitrary generation, say t = 200, are shown

in Figure 4.11b. As can be observed at t = tmild, the solutions of NSGA-III and NSGA-III-IP3

coincide, implying that NSGA-III-IP3 behaves in exactly the same manner as NSGA-III till the

generation in which the IP3 operator is invoked for the first time. In that, there is a perceivable

gap between the solutions, which is applicable to both NSGA-III and NSGA-III-IP3. However, at

t = 200, while there is still a gap between the solutions of NSGA-III, the uniformity of solutions

has significantly improved for NSGA-III-IP3. This improvement in the uniformity of solutions

can only be attributed to the efficacy of the IP3 operator.

4.5.2.2 MW12 Problem (M = 2)

Here, MW12 problems is considered for discussion, where NSGA-III is able to achieve a rea-

sonable PF -approximation. Reference may be made to Figures 4.12a and 4.12b, which present
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(a) Parent solutions t = tmild = 178
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(b) Parent solutions t = 200 > tmild

Figure 4.11. Parent solutions in the respective median runs of NSGA-III and NSGA-III-IP3 on CIBN1

problem at: t = tmild = 178, and at t = 200 (an arbitrary generation afterward). Notice how the spread

is similar in both generations but the uniformity of solutions in NSGA-III-IP3 has improved significantly,

owing to the gap progression submodule of the IP3 operator.

the generation-wise median hypervolume and g(X) plots, respectively, among the 31 randomly

seeded runs of NSGA-III and NSGA-III-IP3. The termination generation tterm had been set as

1068 for NSGA-III, as determined on-the-fly for NSGA-III-IP3. As evident, both NSGA-III and

NSGA-III-IP3 achieved a similar PF -approximation at the end of tterm generations. Hence, as

per the premise for interpretation of the results, laid earlier (Chapter 2, Section 2.5), the scope

of possible enhancements by the IP3 operator, reduces to speeding-up of the PF -approximation.

This is endorsed by the reference to an arbitrarily chosen generation t = 250 in Figure 4.12a,

where NSGA-III-IP3 clearly achieved a better hypervolume than NSGA-III.
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Figure 4.12. Generation-wise performance of NSGA-III and NSGA-III-IP3 on MW12.

Towards a deeper investigation, the solutions obtained in the respective median runs of NSGA-
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III and NSGA-III-IP3, at t = tterm and at t = 250 are shown in Figures 4.13a and 4.13b, respec-

tively. In that, while the solutions at t = tterm reflect the similar performance of NSGA-III and

NSGA-III-IP3, the solutions at t = 250 clearly reflect the better performance of NSGA-III-IP3

in terms of diversity. Such an improvement sped up the PF approximation, which could only be

attributed to the search efficacy infused by the IP3 operator into NSGA-III.
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(a) Obtained solutions at t = tterm
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(b) Obtained solutions at t = 250

Figure 4.13. Solutions obtained in the respective median runs of NSGA-III and NSGA-III-IP3, at termi-

nation and at an arbitrarily fixed generation, in MW12 problem.

4.5.2.3 DASCMOP9 Problem (M = 3)

The efficacy of the IP3 operator has been demonstrated above on two two-objective problems,

namely CIBN1 and MW12. Widening the scope of this discussion, a three-objective prob-

lem, namely DASCMOP9, has been discussed here. In that, Figures 4.14a and 4.14b show

the generation-wise median hypervolume and g(X) plots, respectively, among the 31 randomly

seeded runs of NSGA-III and NSGA-III-IP3. For NSGA-III, tterm = 1539 had been used, as

determined on-the-fly for NSGA-III-IP3. Clearly: (a) in terms of hypervolume, NSGA-III-IP3

performs significantly better than NSGA-III, and (b) in terms of g(X), NSGA-III-IP3 performs

worse in the intermediate generations, but performed (statistically) similar at termination.

Further, the final obtained solutions in the respective median runs of NSGA-III and NSGA-

III-IP3 on DASCMOP9 problem are shown in Figure 4.15. As evident, NSGA-III failed to

achieve a reasonable diversity across the PF , while NSGA-III-IP3 achieved a diverse set of

solutions across the PF , providing a proof-of-concept that the proposed IP3 operator is suitable

for diversity-enhancement in more than two objectives as well.
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Figure 4.14. Generation-wise performance of NSGA-III and NSGA-III-IP3 on DASCMOP9.
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Figure 4.15. Final obtained solutions in the respective median runs of NSGA-III and NSGA-III-IP3 on

DASCMOP9 problem.

4.5.3 IP3 Operator’s Performance Sensitivity towards Variation in k

As discussed earlier in Section 4.1.2, setting the number of nearest neighbours k (in kNN) is im-

portant since keeping it very low or very high may lead to underfitting or overfitting, respectively.

Although the choice of k = nvar has been reasoned, it is imperative to analyze the IP3 opera-

tor’s performance sensitivity towards the variation in k. In this background, the performance of

NSGA-III-IP3 is presented here with three different settings of k, on all considered test problems.

These include: (a) k = 0.5nvar, leading to a value lower than the proposed setting; (b) k = nvar,

the proposed setting; and (c) k = 1.5nvar, leading to a value higher than the proposed setting.

The median hypervolume obtained by NSGA-III-IP3 with all three settings of k, at the end of

tterm generations determined on-the-fly for k = nvar, are shown in Table 4.3. In that, the best

obtained hypervolume, and its statistically equivalent results are marked in bold. From Table 4.3,
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Table 4.3. Hypervolume based comparison of NSGA-III-IP3, across different settings of k (used in the

ML method). Here, tterm determined on-the-fly for NSGA-III-IP3 with k = nvar, has been used for other

values of k. The best performing algorithm and the statistically equivalent algorithms are marked in bold.

Problem tterm k = 0.5nvar k = nvar k = 1.5nvar

M = 2

CIBN1 1404 0.461365 0.483381 0.480270

CIBN2 753 0.668817 0.669094 0.670272

CIBN3 889 0.218083 0.219149 0.219981

DASCMOP1 1948 0.092495 0.316990 0.310258

DASCMOP2 1793 0.423645 0.637702 0.643858

DASCMOP3 1639 0.391166 0.394160 0.421778

DASCMOP4 1978 0.336946 0.336812 0.336798

DASCMOP5 2101 0.672619 0.672677 0.672666

DASCMOP6 2377 0.574846 0.574818 0.571492

MW1 1047 0.415397 0.415318 0.415296

MW2 836 0.483818 0.482899 0.482363

MW3 875 0.470024 0.469803 0.454545

MW5 1821 0.196080 0.197173 0.190051

MW6 1229 0.298365 0.298348 0.287468

MW7 892 0.366522 0.366413 0.366388

MW9 1071 0.295749 0.296410 0.295482

MW10 1063 0.247155 0.247365 0.199358

MW11 961 0.266061 0.259526 0.243113

MW12 1068 0.570748 0.570814 0.570793

MW13 972 0.328788 0.328191 0.326313

M = 3

CIBN4 438 0.921200 0.917063 0.926683

CIBN5 287 0.629971 0.629746 0.629372

DASCMOP7 1693 1.022840 1.025306 1.016004

DASCMOP8 1650 0.658195 0.658097 0.649069

DASCMOP9 1539 0.647740 0.647012 0.646312

MW4 743 1.041465 1.041362 1.041295

MW8 718 0.626492 0.626362 0.619107

MW14 914 0.151894 0.158839 0.153753

Total (out of 28) −→ 22 28 27

following may be noted.

• With k = nvar (proposed), the performance was either statistically better than or equivalent

to other settings of k in all (28 out of 28) instances. As evident, the proposed setting of k

performed well, compared to other settings.

• With k = 0.5nvar, the performance was statistically better than or equivalent to other set-

tings of k in only 22 out of 28 instances. This deteriorated performance could be attributed

to the lower value of k than desired, implying that the performance of the IP3 operator is
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sensitive towards variation in k, for k < nvar.

• With k = 1.5nvar, the performance was statistically better than or equivalent to other set-

tings of k in 27 out of 28 instances. Despite this slight deterioration in the overall perfor-

mance, it is fair to infer that the IP3 operator’s performance is not very sensitive towards

variation in k, for k > nvar.

The above endorses the use of k = nvar for the kNN method in IP3 operator. Notably,

only a limited variation in k has been investigated here, owing to the scope of this thesis that

focuses on providing the proof-of-concept that ML methods could be used for such performance

enhancements in RV-EMO algorithms, rather than tuning the parameters of these ML methods.

4.5.4 IP3 Settings vis-à-vis the Convergence-Diversity Balance and Risk-Rewards Tradeoff

In view of the results presented in experimental investigation above, it is fair to infer that NSGA-

III-IP3 effectively addresses the key considerations of convergence-diversity balance and risk-

rewards tradeoff, in majority of the considered problems. Such an effective management, despite

the use of a pro-diversity operator, could be attributed to the following settings that allow a

dominant share of QV across the generations.

• In any generation of NSGA-III-IP3 run where the IP3 operator is invoked, only P IP3 =

50% pro-diversity offspring are created.

• The invocations of the IP3 operator (governed by tIP3freq ≥ 1) are adaptive, based on the

survival rate of the pro-diversity offspring.

In the context of setting P IP3, following scenarios are possible.

• P IP3 < 50%: any such setting would inherently address the key considerations mentioned

above, since the overall share ofQV would be dominant in each generation as well as across

all generations. However, it may lead to more frequent invocations of the IP3 operator com-

pared to P IP3 = 50%, to overall produce the same number of pro-diversity offspring across

all generations. This would lead to more ML model trainings, which is a computationally

inefficient choice.

• P IP3 > 50%: any such setting would not ensure a dominant share of QV across all genera-

tions. As reasoned earlier in Section 1.2 (Chapter 1), this may hamper the management of

the above considerations, consequently deteriorating the effectiveness of the IP3 operator.
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While any setting of P IP2 < 50% does not pose a major implication on the effectiveness

of the IP2 operator, any setting of P IP2 > 50% does. Hence, it is imperative to investigate

the latter scenario. Towards this, the performances of IP2 operator with P IP2 = 50% and with

P IP2 = 80% (a random value > 50%), have been compared on some sample test problems. The

generation-wise median hypervolume plots, from among the 31 randomly seeded runs, are shown

in Figure 4.16. In that, the same tterm generations have been used as given in Table 4.2.
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Figure 4.16. Results of NSGA-III-IP3 with different settings of PIP3 on some test problems.

From Figure 4.16, it may be noted that P IP2 = 80% leads to a worse hypervolume in the

intermediate generations, compared to P IP2 = 50%. This difference in performance may or

may not be significant depending on the nature of problem, for instance: (a) the difference is not

significant in CIBN1 and MW9, whereas (b) it is significant in other problems. Further, this dif-

ference could be attributed to either or both of: (a) over-skew towards diversity, and (b) excessive

reliance on an ML-based operator. However, towards the end generations, the performances with

P IP3 = 50% and P IP3 = 80% are similar. This could be attributed to the adaptive invocations of

IP3 operator (through tIP3freq), that eventually led to lesser frequent invocations of IP3 operator in

case of P IP3 = 80%, compared to P IP3 = 50%.
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Chapter 5

UIP Operator for Simultaneous Convergence

and Diversity Enhancement

In the previous chapters, the IP2 and IP3 operators had been proposed, with sole focus on

convergence- and diversity-enhancement, respectively. Interestingly, on convergence-hard prob-

lems: NSGA-III-IP2 reported (statistically) significantly better convergence over the base NSGA-

III, without compromising on diversity. Similarly, on diversity-hard problems: NSGA-III-IP3

reported significantly better diversity over the base NSGA-III, without compromising on conver-

gence. Such revelations testify that the delicate convergence-diversity balance which is essential

for a good PF -approximation, could be retained, by ensuring that the convergence-diversity-

neutral offspring produced by the natural variation operators, remained at least 50% of the total

offspring, utilized across all the generations of NSGA-III-IP2 or NSGA-III-IP3.

Notably, a priori characterization of a given MOP, as convergence-hard or diversity-hard, is

not a trivial task. Hence, it is critically important to have an operator that provides the scope for

improvement in both convergence and diversity, without a priori assumption or knowledge of the

MOPs’ characteristics. To this effect, this chapter proposes the UIP operator, which invokes both

IP2 and IP3 operators, for the creation of pro-convergence QIP2 and pro-diversity QIP3 offspring

solutions, respectively. In that, the overall contribution of QV across all generations dominates

the collective contribution ofQIP2 andQIP3, as symbolically depicted in Figure 1.3. The rationale

behind ensuring this dominance of QV has been provided earlier is Section 1.2 (Chapter 1).

The remaining chapter is organized as follows: the proposed UIP operator is detailed in

Section 5.1, along with its integration with some RV-EMO algorithms, including NSGA-III, θ-

DEA and MOEA/DD. Its computational complexity is highlighted in Section 5.2, followed by

its comparison with some common enhancements used in EMO algorithms in Section 5.3. The

85
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Source of offspring 

solutions that are 

subjected to selection

Linkage of offspring solutions with the dual 

goals in EMO

Convergence Diversity

RV-EMO 𝑄V

RV-EMO-IP2 𝑄IP2 𝑄V

RV-EMO-IP3 𝑄V 𝑄IP3

RV-EMO-UIP 𝑄IP2 𝑄V 𝑄IP3

Figure 5.1. Symbolic depiction of the convergence-diversity balance across all generations of RV-EMO-

UIP vis-à-vis RV-EMO-IP3, RV-EMO-IP2 and RV-EMO. The offspring created using natural variation

operators QV do not impose any explicit preference for either convergence or diversity.

experimental settings are discussed in Section 5.4, followed by results in Sections 5.5 and 5.6.

Finally, a small analysis of the additional run time associated with the UIP operator is presented

in Section 5.7.

5.1 Proposed UIP Operator for Convergence and Diversity Enhancement

It has been highlighted above that the UIP operator relies on the invocations of both IP2 and IP3

operators, in a manner that the delicate convergence-diversity balance is not disrupted. It may be

noted that in Chapter 3, the constitutive modules of the IP2 operator were presented, and their

integration with NSGA-III was summarized in Algorithm 3.5, in reference to any generation t of

NSGA-III-IP2. Similarly, in Chapter 4, the constitutive modules of the IP3 operator were pre-

sented, and their integration with NSGA-III was summarized in Algorithm 4.5, in reference to

any generation t of NSGA-III-IP3. With an aim to avoid clutter in the algorithmic description of

NSGA-III-UIP, it is important to define the IP2 and IP3 operators as compact, yet self-sufficient

functions, that could be suitably invoked, as part of NSGA-III-UIP. Considering this, the re-

maining section is structured as follows: (a) the IP2 and IP3 operators are defined as compact

functions, and (b) the integration of IP2 and IP3, leading up to the UIP operator is presented.

5.1.1 The IP2 operator’s representation as a Function

The IP2 operator as a function is presented in Algorithm 5.1. It includes: (a) construction of the

training-datasetDt using Algorithm 3.2; (b) training of the ML model onDt using Algorithm 3.3;

(c) creation of ⌊P IP2N⌋ offspring solutions using the natural variation operators, denoted as QV
t ;

and (d) advancement of all the offspring solutions inQV
t using Algorithm 3.4, leading to advanced
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offspring solutions QIP2
t (sized ⌊P IP2N⌋).

Algorithm 5.1: IP2(At, Tt,R, [xl, xu], Pt, P IP2)
Input: Input archive At, target archive Tt, RV setR, original variable bounds [xl, xu], parent population

Pt, proportion of the offspring advanced using IP2 PIP2

Output: Offspring solutions Q(2)
t

1 Dt ← Archive Mapping(At, Tt,R)

2 ML, [xmin, xmax]← Training(Dt, [x
l, xu])

3 QV
t ← Variation(Pt) % sized ⌊PIP2N⌋

4 QIP2
t ← Progression(QV

t ,ML, [xmin, xmax], [xl, xu],PIP2) % sized ⌊PIP2N⌋

5.1.2 The IP3 operator’s representation as a Function

The IP3 operator as a function is presented in Algorithm 5.2. It includes: (a) construction of

M training-datasets D1–DM using Algorithm 4.1; (b) training of M ML models on D1–DM

(one per dataset) using Algorithm 4.2; (c) creation of ⌊P IP3N/2⌋ offspring solutions, QB
t , using

Algorithm 4.3 for a better spread of solutions; (d) creation of ⌊P IP3N/2⌋ offspring solutions,QG
t ,

using Algorithm 4.4 for a better uniformity of solutions, and (e) merging of QB
t and QG

t , leading

to ⌊P IP3N⌋ offspring solutions, denoted as QIP3
t .

Algorithm 5.2: IP3(Pt,R, r, [xl, xu],P IP3)
Input: Parent population Pt, RV setR, neighbourhood radius r, original variable bounds [xl, xu],

proportion of the offspring created using IP3 PIP3

Output: Offspring solutions Q(3)
t

1 D ← Dataset Construction(Pt,R, r)

2 ML, [xmin, xmax]← Training(D, [xl, xu])

3 QB
t ← Boundary Progression(Pt,R,ML, [xmin, xmax], [xl, xu],PIP3) % ⌊PIP3N/2⌋

4 QG
t ← Gap Progression(Pt,R,ML, [xmin, xmax], [xl, xu],PIP3) % ⌊PIP3N/2⌋

5 QIP3
t ← QB

t ∪QG
t % ⌊PIP3N⌋

5.1.3 Formalization of the UIP operator, and its integration with NSGA-III

This section formalizes the UIP operator, as one which pursues improvement in both convergence

and diversity, by independently invoking the IP2 and IP3 operators. In that:
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• the criterion for the first time invocations of the IP2 and IP3 operators remain the same as

before, implying that IP2 is invoked when the underlying RV-EMO population becomes

entirely non-dominated, while IP3 is invoked when the underlying RV-EMO population

indicates mild stability.

• the successive invocations of IP2 and IP3 are guided by independent parameters, namely,

tIP2freq and tIP3freq, respectively. It implies, that in any generation t of an RV-EMO algorithm,

either or both of IP2 and IP3 operators may be active.

In this background, a representative generation t of NSGA-III-UIP has been summarized in

Algorithm 5.3. In that, first the target-archive Tt as required by the IP2 function is updated (line 1,

Algorithm 5.3). Then the prerequisite conditions for invocations of IP2 and IP3 are checked, and

if fulfilled, appropriate flags (startIP2, startIP3) which influence whether or not IP2 and IP3

are to be invoked, are triggered as True (lines 2–7, Algorithm 5.3). In the subsequent generations:

• if tIP2freq generations have passed after the last invocation of IP2 (at t = tIP2pg ), then IP2 is

invoked and ⌊P IP2N⌋ offspring solutions are created, denoted as QIP2
t (lines 8–10, Algo-

rithm 5.3).

• similarly, if tIP3freq generations have passed after the last invocation of IP3 (at t = tIP3pg ), then

IP3 is invoked and ⌊P IP3N⌋ offspring solutions are created, denoted as QIP3
t (lines 11–13,

Algorithm 5.3).

• if the total count of offspring created in the above two steps (|QIP2| + |QIP3|) is smaller

than N , then rest of the offspring are created using the natural variation operators (lines

14–15, Algorithm 5.3).

• the offspring solutions QIP2
t , QIP3

t and QV
t are merged into Qt, sized N . Given that P IP2 =

P IP3 = 50% has been used in this thesis as reasoned earlier in Section 1.2 (Chapter 1),

the possible shares of {QIP2
t , QIP3

t , QV
t } include: (i) {0, 0, 100}%; (ii) {50, 0, 50}%; (iii)

{0, 50, 50}%; and (iv) {50, 50, 0}%. Then the offspring solutions Qt are evaluated (line

16, Algorithm 5.3).

• Qt is used to update an input-archive At+1, as required by the IP2 function, followed by

NSGA-III’s survival selection (lines 17–18, Algorithm 5.3).
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Algorithm 5.3: Generation t of NSGA-III-UIP
Input: RV setR, variable bounds [xl, xu], parent population Pt, offspring survived N

surv(V)
t−1

IP2-specific: target archive Tt−1, input archive At, frequency tIP2
freq, last invocation tIP2

pg ,

proportion PIP2

IP3-specific: neighbourhood radius r, frequency tIP3
freq, last invocation tIP3

pg , proportion PIP3

Output: Pt+1, Tt, At+1, tIP2
freq, tIP3

freq, tIP2
pg , tIP3

pg

1 Tt ← Update Target Archive(Pt, Tt−1,R) % Algorithm 3.1

2 check1← Check Non Dominated(Pt)

3 check2← Check Mild Stabilization()

4 if check1 then

5 startIP2 = True

6 if check2 then

7 startIP3 = True

8 if startIP2 and t− tIP2
pg = tIP2

freq then

9 QIP2
t ← IP2(At, Tt,R, [xl, xu], Pt,PIP2) % sized ⌊PIP2N⌋

10 tIP2
pg ← t

11 if startIP3 and t− tIP3
pg = tIP3

freq then

12 QIP3
t ← IP3(Pt,R, r, [xl, xu],PIP3) % sized ⌊PIP3N⌋

13 tIP3
pg ← t

14 if |QIP2|+ |QIP3| < N then

15 QV
t ← Variation(Pt) % sized N − (|QIP2|+ |QIP3|)

16 Evaluate(Qt), where Qt ≡ QIP2
t ∪QIP3

t ∪QV
t % size N

17 At+1 ← (At ∪Qt ∪ Pt+1−tpast
)\[Pt−tpast ∪Qt−tpast ]

18 Pt+1 ← Survival Selection(Pt ∪Qt)

19 if t = tIP2
pg then

20 tIP2
freq ← Adapt(QIP2

t , Pt+1, Q
V
t−1, N

surv(V)
t−1 , tIP2

freq) % Algorithm 5.4

21 if t = tIP3
pg then

22 tIP3
freq ← Adapt(QIP3

t , Pt+1, Q
V
t−1, N

surv(V)
t−1 , tIP3

freq) % Algorithm 5.4

• finally, tIP2freq and tIP3freq are adapted, if the respective operators were invoked in the current

generation t (lines 19–22, Algorithm 5.3). The procedure for this adaptation has been

discussed below.

The procedure for adapting both tIP2freq and tIP3freq is exactly the same. Hence, a generic adaptation

procedure has been presented for ‘IPj’ in Algorithm 5.4, where j = 2 and 3 correspond to IP2 and

IP3 functions, respectively. In that procedure,
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Algorithm 5.4: Adapt(QIPj
t , Pt+1, Q

V
t−1, N

surv(V)
t−1 , tIPjfreq)

Input: Offspring created by IPj in current generation QIPj
t , survived population Pt+1, offspring created by

variation operators in previous generation QV
t−1, number of offspring in QV

t−1 that survived in

(t− 1)th generation N
surv(V)
t−1 , and frequency tIPj

freq

Output: tIPj
freq

1 N
surv(IPj)
t ← sizeof(QIPj

t ∩ Pt+1)

2 SIPj ← N
surv(IPj)
t /|QIPj

t |

3 SV ← N
surv(V)
t−1 /|QV

t−1|

4 if SIPj > SV then

5 tIPj
freq ← tIPj

freq − 1

6 if SIPj < SV then

7 tIPj
freq ← tIPj

freq + 1

8 if tIPj
freq < 2 then

9 tIPj
freq = 2

• first, the offspring solutions in QIPj
t that are selected through NSGA-III’s survival selection

are counted (line 1, Algorithm 5.4). This count is denoted as N surv(IPj)
t .

• then, the survival rate of the offspring solutions: (i) created through IPj in current genera-

tion, SIPj; and (ii) created through natural variation operators in previous generation, SV,

are computed (lines 2–3, Algorithm 5.4).

• if SIPj > SV, implying a better performance of IPj operator than variation operators, tIPjfreq

is reduced by 1, leading to a more frequent invocation of the IPj function.

• if SIPj < SV, implying a worse performance of IPj operator than variation operators, tIPjfreq

is increased by 1, leading to a lesser frequent invocation of the IPj function.

• finally, it is ensured that tIPjfreq satisfies its minimum value of 2 (lines 8–9, Algorithm 5.4).

The rationale behind this minimum value has been provided earlier in Section 1.2 (Chap-

ter 1), in the context of risk-rewards tradeoff.

5.1.4 UIP operator’s integration with other RV-EMO algorithms

As mentioned earlier in Chapter 1, the proposed UIP operator is generic, and can ideally be in-

tegrated with any RV-EMO algorithm. To facilitate its implementation, two RV-EMO algorithms
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(in addition to NSGA-III) have been selected, including, θ-DEA and MOEA/DD. The algorith-

mic details of the resulting θ-DEA-UIP and MOEA/DD-UIP algorithms are provided below.

5.1.4.1 θ-DEA-UIP

The algorithmic description of any generation t of θ-DEA-UIP is summarized in Algorithm 5.5.

In that, first the target-archive Tt as required by the IP2 function is updated (line 1, Algorithm 5.5).

Then the prerequisite conditions for invocations of IP2 and IP3 are checked, and if fulfilled,

appropriate flags (startIP2, startIP3) which influence whether or not IP2 and IP3 are to be

invoked, are triggered as True (lines 2–7, Algorithm 5.5). In the subsequent generations:

• if tIP2freq generations have passed after the last invocation of IP2 (at t = tIP2pg ), then IP2 is

invoked and ⌊P IP2N⌋ offspring solutions are created, denoted as QIP2
t (lines 8–10, Algo-

rithm 5.5).

• similarly, if tIP3freq generations have passed after the last invocation of IP3 (at t = tIP3pg ), then

IP3 is invoked and ⌊P IP3N⌋ offspring solutions are created, denoted as QIP3
t (lines 11–13,

Algorithm 5.5).

• if the total count of offspring created in the above two steps (|QIP2| + |QIP3|) is smaller

than N , then rest of the offspring are created using the natural variation operators (lines

14–15, Algorithm 5.5).

• the offspring solutions QIP2
t , QIP3

t and QV
t are merged into Qt, sized N . Then the offspring

solutions Qt are evaluated (line 16, Algorithm 5.5).

• Qt is used to update an input-archive At+1, as required by the IP2 function (line 17,

Algorithm 5.5).

• the steps in lines 18–30 (Algorithm 5.5) relate to the steps of the survival selection proce-

dure of θ-DEA [Yuan et al., 2016].

• finally, tIP2freq and tIP3freq are adapted, if the respective operators were invoked in the current

generation t (lines 31–34, Algorithm 5.5).
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Algorithm 5.5: Generation t of θ-DEA-UIP
Input: RV setR, variable bounds [xl, xu], parent population Pt, offspring survived N

surv(V)
t−1

IP2-specific: target archive Tt−1, input archive At, frequency tIP2
freq, last invocation tIP2

pg ,

proportion PIP2

IP3-specific: neighbourhood radius r, frequency tIP3
freq, last invocation tIP3

pg , proportion PIP3

Output: Pt+1, Tt, At+1, tIP2
freq, tIP3

freq, tIP2
pg , tIP3

pg

1 Tt ← Update Target Archive(Pt, Tt−1,R) % Algorithm 3.1

2 check1← Check Non Dominated(Pt)

3 check2← Check Mild Stabilization()

4 if check1 then

5 startIP2 = True

6 if check2 then

7 startIP3 = True

8 if startIP2 and t− tIP2
pg = tIP2

freq then

9 QIP2
t ← IP2(At, Tt,R, [xl, xu], Pt,PIP2) % sized ⌊PIP2N⌋

10 tIP2
pg ← t

11 if startIP3 and t− tIP3
pg = tIP3

freq then

12 QIP3
t ← IP3(Pt,R, r, [xl, xu],PIP3) % sized ⌊PIP3N⌋

13 tIP3
pg ← t

14 if |QIP2|+ |QIP3| < N then

15 QV
t ← Variation(Pt) % sized N − (|QIP2|+ |QIP3|)

16 Evaluate(Qt), where Qt ≡ QIP2
t ∪QIP3

t ∪QV
t % size N

17 At+1 ← (At ∪Qt ∪ Pt+1−tpast
)\[Pt−tpast

∪Qt−tpast
]

18 Rt ← Pt ∪Qt

19 St ← Get Pareto Nondomination Levels(Rt)

20 Update Ideal Point(St)

21 Normalize (St, z∗, znad)

22 C ← Clustering(St,R)

23 {F ′
1, F

′
2, . . .} ← θ-Nondominated Sort(St, C)

24 Pt+1 ← ∅

25 i← 1

26 while |Pt+1|+ |F ′
i | < N do

27 Pt+1 ← Pt+1 ∪ F ′
i

28 i← i+ 1

== Continued on the next page ==
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== In continuation from the previous page ==

25 Random Sort (F ′
i )

26 Pt+1 ← Pt+1 ∪ F ′
i [N − |Pt+1|]

27 if t = tIP2
pg then

28 tIP2
freq ← Adapt(QIP2

t , Pt+1, Q
V
t−1, N

surv(V)
t−1 , tIP2

freq)

29 if t = tIP3
pg then

30 tIP3
freq ← Adapt(QIP3

t , Pt+1, Q
V
t−1, N

surv(V)
t−1 , tIP3

freq)

5.1.4.2 MOEA/DD-UIP

The algorithmic description of any generation t of MOEA/DD-UIP is summarized in Algo-

rithm 5.6. In that, first the target-archive Tt as required by the IP2 function is updated (line 1,

Algorithm 5.6). Then the prerequisite conditions for invocations of IP2 and IP3 are checked, and

if fulfilled, appropriate flags (startIP2, startIP3) which influence whether or not IP2 and IP3

are to be invoked, are triggered as True (lines 2–7, Algorithm 5.6). In the subsequent generations:

• if tIP2freq generations have passed after the last invocation of IP2 (at t = tIP2pg ), then IP2 is

invoked and ⌊P IP2N⌋ offspring solutions are created, denoted as QIP2
t (lines 8–10, Algo-

rithm 5.6).

• similarly, if tIP3freq generations have passed after the last invocation of IP3 (at t = tIP3pg ), then

IP3 is invoked and ⌊P IP3N⌋ offspring solutions are created, denoted as QIP3
t (lines 11–13,

Algorithm 5.6).

• if the total count of offspring created in the above two steps (|QIP2| + |QIP3|) is smaller

than N , then rest of the offspring are created using the natural variation operators (lines

14–16, Algorithm 5.6).

• the offspring solutions QIP2
t , QIP3

t and QV
t are merged into Qt, sized N . Then the offspring

solutions Qt are evaluated (line 17, Algorithm 5.6).

• Qt is used to update an input-archive At+1, as required by the IP2 function (line 18,

Algorithm 5.6).

• the steps in lines 19–21 (Algorithm 5.6) relate to the steps of the survival selection proce-

dure of MOEA/DD [Li et al., 2015a].
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• finally, tIP2freq and tIP3freq are adapted, if the respective operators were invoked in the current

generation t (lines 22–25, Algorithm 5.6).

Algorithm 5.6: Generation t of MOEA/DD-UIP
Input: RV setR, variable bounds [xl, xu], parent population Pt, offspring survived N

surv(V)
t−1

IP2-specific: target archive Tt−1, input archive At, frequency tIP2
freq, last invocation tIP2

pg ,

proportion PIP2

IP3-specific: neighbourhood radius r, frequency tIP3
freq, last invocation tIP3

pg , proportion PIP3

Output: Pt+1, Tt, At+1, tIP2
freq, tIP3

freq, tIP2
pg , tIP3

pg

1 Tt ← Update Target Archive(Pt, Tt−1,R) % Algorithm 3.1

2 check1← Check Non Dominated(Pt)

3 check2← Check Mild Stabilization()

4 if check1 then

5 startIP2 = True

6 if check2 then

7 startIP3 = True

8 if startIP2 and t− tIP2
pg = tIP2

freq then

9 QIP2
t ← IP2(At, Tt,R, [xl, xu], Pt,PIP2) % sized ⌊PIP2N⌋

10 tIP2
pg ← t

11 if startIP3 and t− tIP3
pg = tIP3

freq then

12 QIP3
t ← IP3(Pt,R, r, [xl, xu],PIP3) % sized ⌊PIP3N⌋

13 tIP3
pg ← t

14 if |QIP2|+ |QIP3| < N then

15 P̄t ← Mating Selection(Pt)

16 QV
t ← Variation(P̄t) % sized N − (|QIP2|+ |QIP3|)

17 Evaluate(Qt), where Qt ≡ QIP2
t ∪QIP3

t ∪QV
t % size N

18 At+1 ← (At ∪Qt ∪ Pt+1−tpast
)\[Pt−tpast

∪Qt−tpast
]

19 Pt+1 ← Pt

20 for q ∈ Qt do

21 Pt+1 ← Update Population(Pt+1, q)

22 if t = tIP2
pg then

23 tIP2
freq ← Adapt(QIP2

t , Pt+1, Q
V
t−1, N

surv(V)
t−1 , tIP2

freq)

24 if t = tIP3
pg then

25 tIP3
freq ← Adapt(QIP3

t , Pt+1, Q
V
t−1, N

surv(V)
t−1 , tIP3

freq)
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5.2 Computational Complexity of UIP operator

As detailed earlier in Section 5.1, the proposed UIP operator is constituted by two modules. These

modules are based on the IP2 and IP3 operators, whose computational complexity analysis has

already been presented in Section 3.3 (Chapter 3) and Section 4.3 (Chapter 4), respectively. From

that analysis, the worst case time and space complexities of IP2 based offspring advancement and

IP3 based offspring creation, are summarized in Table 5.1.

Table 5.1. Time- and space-complexities of different modules of the UIP operator.

Module Time-complexity Space-complexity

IP2 based offspring advancement O(N3t3pastnvar log (Ntpast)) O(N2t2pastnvar)

IP3 based offspring creation O(MNnvar log(N)) O(MNnvar)

It may be noted that these worst case complexities, for both IP2 and IP3, correspond to their

underlying ML methods, i.e., RF and kNN, respectively. The use of a different ML method may

affect the corresponding complexities in Table 5.1. However, since the focus of this thesis is to

provide a proof-of-concept that ML methods could be utilized for such enhancements relating

to convergence and diversity in RV-EMO algorithms, the choice of ML method has not been

incorporated within the scope of this thesis.

5.3 Comparison with Some Existing Enhancements

The concept of the UIP operator (and underlying IP2 and IP3 operators), as proposed in this

thesis, may seem to be similar to certain existing enhancements used in the EMO domain. In

this section, some of these practices, including: (a) a local-search method, and (b) a surrogate-

modeling method, are highlighted, and their key differences with the proposed operators are

discussed. In this discussion, the proposed IP2, IP3 and UIP operators are collectively referred

to as the IP operators.

5.3.1 A Local Search Method

The IP operators attempt to advance/create the offspring solutions through their ML-based pro-

gression, at any intermediate generation on an RV-EMO run. This operation may not be confused

with a local search method that aims to improve the local convergence of solutions at any gener-
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ation. The key differences are highlighted below.

• The presence of multiple conflicting objectives (usually the case with any MOP) poses a

challenge to local search, as the local search usually relies on a single objective function

for improvement, defining which may be a non-trivial task. In contrast, multiple objectives

do not pose any additional challenge for any of the IP operators.

• Implementing a local search necessitates additional solution evaluations beyond the de-

fault solution evaluations of any EMO algorithm, which is not the case with any of the IP

operators.

• A local search usually means searching for the best solution in a local neighbourhood,

while the progression of any solution’s X-vector using any of the IP operators may be

substantial, and not necessarily be locAlgorithm

5.3.2 A Surrogate-modeling Method

In EMO algorithms, a surrogate model is often constructed and used as a search basis, to evolve

the solutions toward the PF . In real-world problems, where the solution evaluations are com-

putationally very expensive, such an approach helps in reducing the number of actual solution

evaluations needed to converge, hence saving computational effort and run time, as discussed

earlier in Section 2.1.1 (Chapter 2). In past studies, several ML models have been used for build-

ing surrogate-models, including RF. In this sense, one might mistake the proposed ML-based IP

operators as being nothing but a standard ML-based surrogate-modeling method.

However, the two differ significantly in terms of their scope and methodology, the key high-

lights of which are presented in Table 5.2. While the eventual goal of ML-based surrogate mod-

eling is to help replace the actual objective and constraint computations with their approxima-

tions (via surrogates), the IP operators aspire to advance/create offspring solutions. In terms of

methodology, the ML-based surrogate-models learn from an X-F mapping, while the IP opera-

tors utilize ML method(s) to learn from an X-X mapping. This explains the differences in terms

of ML model application, evolution of offspring, and mode of fitness evaluation, as cited in the

Table 5.2. While the proposed IP operators provide an alternate method to exploit current and

past solutions to create new and, hopefully, better offspring solutions, it could also be profitably

used in conjunction with a surrogate-modeling method in addressing the same problem.



5.4. Experimental Setup 97

Table 5.2. Fundamental differences between an EMO algorithm coupled with surrogate-modeling and

with one of the proposed IP operators (IP2, IP3 or UIP).

Point of difference EMO with surrogate-modeling EMO with IP operators

Learning with ML model(s) X-F mapping X-X mapping

ML model application
Does not alter a solution’s

X-vector directly

Alters a solution’s X-vector

directly

Evolution of Offspring
Performed by variation

operators only

Performed by the variation

operators and/or the learnt

ML model(s)

Fitness evaluation
Guided by both approximate

and actual objective values

Guided by actual objective

values only

It is notable that the use of a surrogate-model in an EMO algorithm can only offer a speed-

up in convergence. In other words, a surrogate-model may help achieve convergence in lesser

solution evaluations than required by the base EMO algorithm alone. However, in MOPs where

the base EMO algorithm fails to reasonably approximate the PF , the use of a surrogate-model

may not help achieve a better PF -approximation. However, the proposed IP operators (IP2, IP3

and UIP) may help in improving the quality of the PF -approximation, owing to the fact that

these operators directly participate in the evolution of offspring solutions.

5.4 Experimental Setup

This section sets the foundation for experimental investigation, by highlighting the: (a) test-suite

considered, (b) performance indicators used and related statistical analysis, and (c) parameters

pertaining to the RV-EMO algorithm(s) and the UIP operator.

5.4.1 Test-suite

To demonstrate the efficacy of the UIP operator, first, several multi-objective problems have been

used, as used earlier in Chapters 3 and 4. These include: (i) convergence-hard (Z̃DT, DTLZ and

MaF); and (ii) diversity-hard (CIBN, DASCMOP and MW) problems.

Once the efficacy of the UIP operator is established on multi-objective test problems, several

many-objective test problems with M = 5, 8 and 10 have also been considered, that include

DTLZ [Deb et al., 2005] and MaF [Cheng et al., 2017] problems. In that, the distance variables
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have been set as k = 20, wherever applicable.

5.4.2 Performance Indicators and Statistical Analysis

The choice of performance indicators is the same as adopted earlier in Chapters 3 and 4. The key

details are re-iterated below.

• Hypervolume is used the primary indicator with reference point set as R1×M = [1 +

1
p
, . . . , 1 + 1

p
], where p is the number of gaps set for the Das-Dennis method while gen-

erating the RVs for RV-EMO. Further, for the problems where the scales of different ob-

jectives are different, the solutions are normalized in the F -space using the theoretical PF

extremes.

• Population mean of the g(X) function is used as the secondary indicator, to provide insights

into the convergence levels in the X-space.

Further, in the context of statistical analysis of the performance indicator values,

• when comparing only two algorithms, at a time, Wilcoxon ranksum test [Wilcoxon, 1945]

is performed on the indicator values reported over multiple/independently seeded runs. In

that, the threshold value of 0.05 (95% confidence interval) is used.

• when comparing more than two algorithms, at a time, Kruskal-Wallis test [Kruskal and

Wallis, 1952] with threshold p-value of 0.05 is used, to infer if their overall differences

are statistically insignificant or not. If not, the Wilcoxon test is used for their pairwise

comparisons, treating NSGA-III-UIP as reference. Furthermore, the threshold p-value is

adjusted using the standard Bonferroni correction [Abdi, 2007], to retain the same overall

confidence.

5.4.3 Parameter Settings

In this subsection, the parameters and settings used for: (a) the EMO algorithms; and (b) the UIP

operator, have been discussed.

5.4.3.1 EMO Settings

With an aim to obtain a reasonably sized set of RVs using the Das-Dennis method [Das and

Dennis, 1998], the gap parameter is set as given in Table 5.3. In that, wherever two values of p
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(gaps) are shown, the first value is used to create the boundary RVs and the second value is used to

create interior RVs [Deb and Jain, 2014]. For coherence, the population size N is kept the same

as the number of RVs corresponding to a particular objective, as given in Table 5.3. Further,

the natural variation operators include SBX crossover (pc = 0.9 and ηc = 20) and polynomial

mutation (pc = 1/nvar and ηm = 20) for an nvar variable problem.

Table 5.3. Parameter settings for the Das-Dennis method.

Setting M = 2 M = 3 M = 5 M = 8 M = 10

p (gaps) 99 13 5, 4 3, 3 3, 3

N 100 105 196 240 440

Further, each EMO algorithm has been run for 31 times, with random seeds. In that, for

NSGA-III-UIP, the termination generation tterm has been determined on-the-fly through the sta-

bilization tracking algorithm, using ψterm ≡ {3, 50}. For all other EMO algorithms, the mean

tterm determined for NSGA-III-UIP over 31 runs has been used as the tterm.

5.4.3.2 UIP Operator Settings

Notably, the UIP operator does not involve any additional parameters, other than the ones that are

a part of either IP2 or IP3 operator, for which the specifications have been provided in Chapters 3

and 4, respectively. The only change is that the initial values of tIP2freq and tIP3freq have been set as 2

instead of 1, which aligns with their respective minimum values. Further, there is an additional

constraint on the setting of P IP2 and P IP3, given as P IP2 + P IP3 ≤ 100%. In case this constraint

is violated, the total offspring created in a particular generation where both IP2 and IP3 operators

are invoked, will exceed N , resulting in additional solution evaluations. Notably, the setting of

P IP2 = P IP3 = 50%, as used in this thesis, satisfies the above constraint.

5.5 Results and Discussions

This section first presents the assessment of: (a) UIP vis-à-vis IP2, on convergence-hard prob-

lems; and (b) UIP vis-à-vis IP3, on diversity-hard problems, to collectively establish the efficacy

of UIP operator on multi-objective problems, following which, the assessment of UIP operator

on many-objective problems has been presented.
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5.5.1 UIP vis-à-vis IP2 operator

In this subsection, the performance comparison of UIP and IP2 operators has been realized

through a direct comparison of NSGA-III-UIP and NSGA-III-IP2 on convergence-hard multi-

objective problems. Notably, NSGA-III has also been included as reference, to assess if UIP’s

integration into NSGA-III leads to a deteriorated performance, in any test instance.

Table 5.4. Hypervolume and g(X) based comparison of NSGA-III-UIP with NSGA-III and NSGA-

III-IP2, on convergence-hard (Z̃DT, DTLZ and MaF) problems. The termination generation (tterm) has

been determined on-the-fly for NSGA-III-UIP. The entries are formatted as median indicator values from

31 runs followed by ‘–’, ‘=’ or ‘+’. –/=/+ inform that NSGA-III-UIP performs statistically better than,

equivalent to, or worse than the underlying algorithm, respectively.

Problem tterm
Hypervolume g(X)

NSGA-III NSGA-III-IP2 NSGA-III-UIP NSGA-III NSGA-III-IP2 NSGA-III-UIP

M
=

2

Z̃DT1 1198 0.681860= 0.681860= 0.681859 1.0007E+00– 1.0004E+00= 1.0004E+00

Z̃DT2 1267 0.348794= 0.348794= 0.348794 1.0005E+00– 1.0003E+00= 1.0003E+00

Z̃DT3 1007 1.068445= 1.068408= 1.068492 1.0096E+00= 1.0061E+00= 1.0070E+00

Z̃DT4 1767 0.681859= 0.681860= 0.681860 1.0007E+00– 1.0004E+00= 1.0002E+00

Z̃DT6 1836 0.312752– 0.324640– 0.336501 1.4277E+00– 1.3161E+00– 1.1387E+00

M
=

3

DTLZ1 1497 1.221639= 1.222229= 1.222575 1.9427E-02= 1.1336E-02= 6.2710E-03

DTLZ2 978 0.667327= 0.667309= 0.667323 5.3477E-06= 4.4180E-06= 4.8873E-06

DTLZ3 1750 0.652251– 0.656486– 0.662523 8.9193E-03– 6.3068E-03– 2.3456E-03

DTLZ4 1449 0.667309– 0.667331= 0.667346 1.6300E-07= 5.9762E-08+ 4.4408E-07

MaF1 608 0.235973= 0.234828= 0.235578 4.6384E-04= 5.7130E-04= 1.0697E-03

MaF2 486 0.396887= 0.396552= 0.396720 1.5266E-01= 5.5675E-02= 6.0477E-02

MaF3 2135 1.193651= 1.193381= 1.194214 3.7947E-03= 3.8814E-03= 2.4265E-03

MaF4 1214 0.612050– 0.621803– 0.634728 2.8012E-02– 1.5481E-02– 3.3689E-03

MaF5 1345 1.227613= 1.227604= 1.227609 5.7435E-07= 2.5409E-06= 8.4903E-07

MaF7 1201 0.375791= 0.376011= 0.375603 1.0000E+00= 1.0003E+00= 1.0003E+00

MaF8 1244 0.463948– 0.464591= 0.466427 — — —

MaF9 1160 0.626751= 0.626751= 0.626726 — — —

MaF10 996 0.528291= 0.520969= 0.521247 1.8401E-02= 1.1232E-02+ 2.0249E-02

MaF11 993 0.980497= 0.980142= 0.980780 9.5841E-04= 1.2933E-03= 1.2323E-03

MaF12 725 0.599802– 0.614806+ 0.612866 2.3092E-01= 1.7244E-01+ 1.9415E-01

MaF13 1065 0.365532– 0.371873– 0.377158 — — —

Total −→ 07/14/00 04/16/01 of 21 probs. 06/12/00 03/12/03 of 18 probs.

Note: (—) implies that the concerned problem does not have a g(X) function.
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Table 5.4 reports the median hypervolume and median g(X) values, from among the 31

randomly seeded runs at the end of tterm generations. In that, tterm has been determined on-the-

fly for NSGA-III-UIP, and same has been used for NSGA-III and NSGA-III-IP2. From Table 5.4,

following can be observed with respect to NSGA-III-UIP versus NSGA-III-IP2.

• In the context of hypervolume: NSGA-III-UIP performs either statistically better than or

equivalent to NSGA-III-IP2 in 20 out of 21 instances. In that, NSGA-III-UIP performs

statistically better than and worse than NSGA-III-IP2 in 4 and 1 instance(s), respectively.

• In the context of g(X) values: NSGA-III-UIP performs either statistically better than or

equivalent to NSGA-III-IP2 in 15 out of 18 instances, where the g(X) function was exis-

tent/computable (instances where it is non-existent, are marked by ‘—’). In that, NSGA-

III-UIP performs statistically better than and worse than NSGA-III-IP2 in equal number of

instances.

Overall, it is fair to infer NSGA-III-UIP offers a better performance in terms of hypervolume

and an equivalent performance in terms of g(X) values, than NSGA-III-IP2.

Moreover, from Table 5.4, it can be observed that NSGA-III-UIP performs significantly bet-

ter than or equivalent to NSGA-III in all instances, in terms of both hypervolume and g(X)

values. This clearly suggests that integrating the UIP operator into NSGA-III did not deteriorate

its performance in any of the convergence-hard problems considered.

To share more insights into these results, two sample test instances have been chosen, that

include: (i) Z̃DT6, where NSGA-III-UIP offers a better hypervolume; and (ii) MaF12, where

NSGA-III-UIP offers a worse hypervolume, than NSGA-III-IP2. Figure 5.2a shows the genera-

tion wise median hypervolume plot among the 31 randomly seeded runs of NSGA-III, NSGA-

III-IP2 and NSGA-III-UIP. In that, the better hypervolume of NSGA-III-UIP could be attributed

to the role of IP3 function in UIP, that helped achieve a diverse set of target solutions for the IP2

function to learn from. This led to a better learning in IP2 function and consequently, led to a

better convergence of NSGA-III-UIP, as can be observed through the g(X) values in Table 5.4.

Further, Figure 5.2b shows the generation-wise median hypervolume plot among the 31 ran-

domly seeded runs of NSGA-III, NSGA-III-IP2 and NSGA-III-UIP. Clearly, NSGA-III-UIP of-

fers a slightly worse hypervolume than NSGA-III-IP2, which could also be attributed to the role

of IP3 function in UIP. In that, if the population has already achieved a reasonable diversity across

the PF in early generations, which is fair to expect in a convergence-hard problem, the scope of
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Figure 5.2. Performance of NSGA-III-UIP vis-à-vis NSGA-III and NSGA-III-IP2 on two sample

convergence-hard problems.

diversity-enhancement through the IP3 function would diminish, causing some loss of solution

evaluations. This may lead to a worse convergence (as can be observed through g(X) values in

Table 5.4), and consequently, a worse hypervolume.

5.5.2 UIP vis-à-vis IP3 operator

In this subsection, the performance comparison of UIP and IP3 operators has been realized

through a direct comparison of NSGA-III-UIP and NSGA-III-IP3 on diversity-hard multi-objective

problems. Notably, NSGA-III has also been included as reference, to assess if UIP’s integration

into NSGA-III leads to a deteriorated performance, in any test instance.

Table 5.5 reports the median hypervolume and median g(X) values, from among the 31

randomly seeded runs at the end of tterm generations. In that, tterm has been determined on-the-

fly for NSGA-III-UIP, and same has been used for NSGA-III and NSGA-III-IP3. From Table 5.5,

following can be observed with respect to NSGA-III-UIP versus NSGA-III-IP3.

• In context of hypervolume: NSGA-III-UIP performs either statistically better than or equiv-

alent to NSGA-III-IP3 in 27 out of 28 instances. In that, NSGA-III-UIP performs statisti-

cally better and worse than NSGA-III-IP3 in 6 and 1 instance(s), respectively.

• In context of g(X) values: NSGA-III-UIP performs either statistically better than or equiv-

alent to NSGA-III-IP3 in all 28 out of 28 instances.

Overall, it is fair to infer than NSGA-III-UIP offers a better performance than NSGA-III-IP3,

in terms of both hypervolume and g(X) values. Moreover, from Table 5.5, following can be
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Table 5.5. Hypervolume and g(X) based comparison of NSGA-III-UIP with NSGA-III and NSGA-III-

IP3, on diversity-hard (CIBN, DASCMOP and MW) problems. The termination generation (tterm) has

been determined on-the-fly for NSGA-III-UIP. The entries are formatted as median indicator values from

31 runs followed by ‘–’, ‘=’ or ‘+’. –/=/+ inform that NSGA-III-UIP performs statistically better than,

equivalent to, or worse than the underlying algorithm, respectively.

Problem tterm
Hypervolume g(X)

NSGA-III NSGA-III-IP3 NSGA-III-UIP NSGA-III NSGA-III-IP3 NSGA-III-UIP

M
=

2

CIBN1 1365 0.327867– 0.482560– 0.509220 0.000594+ 0.001758– 0.001178

CIBN2 789 0.658712– 0.669122= 0.669612 0.003744– 0.002480– 0.001512

CIBN3 960 0.213584– 0.219614– 0.227093 0.003216– 0.002899– 0.001622

DASCMOP1 2101 0.089766– 0.320434– 0.332936 0.000258+ 0.004292– 0.001781

DASCMOP2 1944 0.414610– 0.645024– 0.667395 0.000284+ 0.010297– 0.002657

DASCMOP3 1658 0.391774– 0.396188= 0.399092 0.000530= 0.000120= 0.000125

DASCMOP4 1993 0.336866= 0.336810= 0.336960 0.000146= 0.000139= 0.000101

DASCMOP5 2113 0.672667= 0.672740= 0.672744 0.000137– 0.000126= 0.000100

DASCMOP6 2432 0.549906– 0.574880= 0.574864 0.000093= 0.000074= 0.000063

MW1 1042 0.415304= 0.415293= 0.415323 1.000066= 1.000061= 1.000058

MW2 848 0.483094= 0.482937= 0.491429 1.020607= 1.020729= 1.013901

MW3 868 0.469880= 0.469740= 0.469597 1.041617+ 1.044934= 1.044984

MW5 1783 0.083010– 0.196301= 0.198921 1.000027+ 1.000176= 1.000246

MW6 1244 0.298309– 0.298408– 0.317611 1.026723– 1.026687– 1.013420

MW7 906 0.366397= 0.366483= 0.366303 1.095000– 1.096852– 1.092561

MW9 1063 0.293673– 0.296315= 0.296237 1.452037– 1.427431= 1.428838

MW10 1071 0.247084= 0.247373= 0.268710 1.049229= 1.050259= 1.041663

MW11 976 0.268232= 0.264602= 0.261213 1.278576= 1.246254= 1.245009

MW12 1055 0.570528– 0.570794= 0.570739 1.246357+ 1.249184= 1.249410

MW13 1001 0.328966– 0.328578– 0.346489 1.070329– 1.070999– 1.054297

M
=

3

CIBN4 439 0.912600– 0.920534= 0.923339 0.012217+ 0.016751= 0.015673

CIBN5 294 0.629637+ 0.629868+ 0.628532 0.008626– 0.008349= 0.007897

DASCMOP7 1731 1.027245= 1.026493= 1.025842 0.000909= 0.000977= 0.001066

DASCMOP8 1675 0.630175= 0.659697= 0.638794 0.010419= 0.001257= 0.008113

DASCMOP9 1537 0.346493– 0.647141= 0.647739 0.004972= 0.005465= 0.005233

MW4 743 1.041376= 1.041260= 1.041385 1.000239= 1.000372= 1.000201

MW8 732 0.626663= 0.626711= 0.627444 1.014399= 1.014274= 1.013526

MW14 848 0.152752= 0.151446= 0.154971 1.018127= 1.017369= 1.019706

Total −→ 14/13/01 06/21/01 of 28 probs. 08/13/07 08/20/00 of 28 probs.

observed with respect to NSGA-III-UIP versus NSGA-III.

• In context of hypervolume: NSGA-III-UIP performs either statistically better than or equiv-
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alent to NSGA-III in 27 out of 28 instances. In that, NSGA-III-UIP performs statistically

better and worse than NSGA-III in 14 and 1 instance(s), respectively.

• In context of g(X) values: NSGA-III-UIP performs either statistically better than or equiv-

alent to NSGA-III in 21 out of 28 instances. In that, NSGA-III-UIP performs statistically

better and worse than NSGA-III in 8 and 7 instances, respectively.

Overall, it is fair to infer that NSGA-III-UIP offers a better performance than NSGA-III in terms

of hypervolume, and similar performance to NSGA-III in terms of g(X) values.
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Figure 5.3. Generation-wise hypervolume trend and solutions obtained in the respective median runs of

NSGA-III, NSGA-III-IP3, and NSGA-III-UIP at tterm = 2101 generations, on DASCMOP1.

To share more insights into these results, DASCMOP1 problem has been chosen here for a

sample discussion. Figure 5.3a shows the generation-wise median hypervolume plot among the

31 randomly seeded runs of NSGA-III, NSGA-III-IP3 and NSGA-III-UIP. Besides, the solutions

obtained at the end of tterm = 2101 generations in the respective median runs of NSGA-III,

NSGA-III-IP3 and NSGA-III-UIP, are shown in Figures 5.3b, 5.3c and 5.3d, respectively. In
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that, NSGA-III-UIP clearly offers the best hypervolume among the three, which is endorsed by

the NSGA-III-UIP’s best PF -approximation. Figures 5.3c and 5.3d clearly demonstrate NSGA-

III-UIP could offer a better diversity as well as convergence than NSGA-III-IP3. This better

convergence in DASCMOP1 can also be observed through g(X) values in Table 5.5.

5.5.3 UIP Operator on Many-objective Problems

This subsection aims to assess if the efficacy of the UIP operator, established above on multi-

objective problems, can be extended to many-objective problems as well. Notably, since the

UIP operator clearly outperformed the IP2 and IP3 operators, they have been excluded from

further investigation on many-objective test problems. To this end, Table 5.6 reports the median

hypervolume values from among the 31 randomly seeded runs of NSGA-III and NSGA-III-UIP,

Table 5.6. Hypervolume based comparison of NSGA-III-UIP with NSGA-III on many-objective (DTLZ

and MaF) problems, with M = 5, 8 and 10. The termination generation (tterm) has been determined

on-the-fly for NSGA-III-UIP. The entries are formatted as median hypervolume values from 31 runs

followed by ‘–’, ‘=’ or ‘+’. –/=/+ inform that NSGA-III-UIP performs statistically better than, equivalent

to, or worse than the underlying algorithm, respectively.

Problem
M = 5 M = 8 M = 10

tterm NSGA-III NSGA-III-UIP tterm NSGA-III NSGA-III-UIP tterm NSGA-III NSGA-III-UIP

DTLZ1 1367 2.486820= 2.487010 1604 9.988500= 9.988620 2007 17.757700= 17.757700

DTLZ2 860 2.172040= 2.172090 777 9.816830– 9.818580 793 17.665800– 17.667500

DTLZ3 1071 1.938460+ 0.000000 1537 9.741440= 9.759030 1718 17.650300– 17.664100

DTLZ4 912 2.173240= 2.173190 825 9.826530+ 9.826270 820 17.677500= 17.677200

MaF1 843 0.059222= 0.059753 989 0.015552= 0.015751 830 0.002220= 0.002241

MaF2 359 0.997132= 0.998834 422 4.352760– 4.377980 487 7.846630= 7.856730

MaF3 2238 2.488190– 2.488200 3333 9.988720– 9.988720 3765 17.757700– 17.757727

MaF4 604 0.117321= 0.083836 874 0.118441= 0.153381 1069 0.064231– 0.077138

MaF5 1109 2.487950= 2.487940 1160 9.988720– 9.988720 1196 17.757700– 17.757746

MaF7 1087 0.970398= 0.969063 912 4.402240= 4.390560 849 7.602060= 7.595800

MaF8 1546 0.475295= 0.476568 1315 0.709058+ 0.686091 1214 0.577736= 0.572205

MaF9 985 0.027410= 0.027633 716 0.000518– 0.002425 774 0.000106= 0.000136

MaF10 1077 0.939567– 0.947997 853 3.240900– 3.456380 855 6.178800+ 5.927050

MaF11 968 2.437800= 2.437950 1369 9.807760– 9.847950 1606 17.526500– 17.613100

MaF12 573 1.775930= 1.776530 448 7.256190= 7.254460 483 13.127900= 13.199400

MaF13 820 0.225160+ 0.206183 872 0.234528= 0.224742 867 0.172316= 0.165359

Total −→ 02/12/02 07/07/02 06/09/01 of 16 probs.
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at the end of tterm generations. In that, tterm has been determined on-the-fly for NSGA-III-UIP,

and the same has been used for NSGA-III. From Table 5.6, following may be observed.

• NSGA-III-UIP performs statistically better than NSGA-III in 15 out of 48 instances, spread

over M = 5, 8 and 10.

• NSGA-III-UIP performs statistically better than or equivalent to NSGA-III in 43 out of 48

instances, spread over M = 5, 8 and 10.

From the above, it is fair to infer that NSGA-III-UIP offers an overall better performance than

NSGA-III on considered many-objective problems, ranging from 5 to 10 objectives. This serves

as a proof-of-concept that the proposed UIP operator is scalable in terms of objectives. Hence, the

UIP operator is capable of improving the performance of NSGA-III, not only in multi-objective

problems, but in many-objective problems as well.

5.6 Results with Other RV-EMO Algorithms

To demonstrate how the proposed UIP operator can improve the search efficacy of other RV-EMO

algorithms, the performance of θ-DEA-UIP and MOEA/DD-UIP has been investigated vis-à-vis

their respective base variants, on both multi- and many-objective test problems.

5.6.1 Multi-objective Problems

In this subsection, the performance of θ-DEA-UIP and MOEA/DD-UIP has been investigated

sequentially on both convergence- and diversity-hard problems.

5.6.1.1 Convergence-hard Problems

Table 5.7 reports the median hypervolume, from among 31 randomly seeded runs at the end of

tterm generations, for both θ-DEA-UIP and MOEA/DD-UIP. In that, tterm has been determined

separately for θ-DEA-UIP and MOEA/DD, and the same has been used for their respective base

variants. From Table 5.7, following can be observed.

• θ-DEA-UIP performs either statistically better than or equivalent to θ-DEA in 20 out of 21

instances. In that θ-DEA-UIP performs statistically better than and worse than θ-DEA in 5

and 1 instances, respectively.
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Table 5.7. Hypervolume based comparison of θ-DEA-UIP and MOEA/DD-UIP with their respect base

versions, on convergence-hard (Z̃DT, DTLZ and MaF) multi-objective problems. The termination genera-

tion (tterm) has been respectively determined on-the-fly for θ-DEA-UIP and MOEA/DD-UIP. The entries

are formatted as median indicator values from 31 runs followed by ‘–’, ‘=’ or ‘+’. –/=/+ inform that the

corresponding UIP variant performs statistically better, equivalent, or worse, respectively.

Problem tterm θ-DEA θ-DEA-UIP tterm MOEA/DD MOEA/DD-UIP

M
=

2

Z̃DT1 1161 0.681280= 0.681282 1155 0.681215= 0.681159

Z̃DT2 1237 0.347854= 0.347823 1247 0.347746= 0.347793

Z̃DT3 977 1.067375= 1.067561 1005 1.067135= 1.067364

Z̃DT4 1744 0.681257= 0.681356 1675 0.681196= 0.681241

Z̃DT6 1822 0.313645– 0.334241 1771 0.313384– 0.332646

M
=

3

DTLZ1 1118 1.213503+ 0.873703 1136 1.216124= 1.215704

DTLZ2 963 0.651611= 0.652131 912 0.653244= 0.653748

DTLZ3 1237 0.611978= 0.085917 981 0.551322+ 0.000000

DTLZ4 1935 0.652918= 0.654282 1226 0.654143– 0.655911

MaF1 618 0.228233= 0.229284 625 0.229522= 0.228215

MaF2 515 0.390904= 0.391138 513 0.393007= 0.394059

MaF3 2123 1.193223= 1.194777 2133 1.191562– 1.194469

MaF4 1300 0.610459– 0.622088 1295 0.613593– 0.623476

MaF5 1831 1.228640= 1.228685 1503 1.228484= 1.228528

MaF7 1166 0.371659= 0.372033 1118 0.371731= 0.371328

MaF8 1532 0.000331= 0.000172 1608 0.000109= 0.000087

MaF9 1155 0.610583– 0.614858 1227 0.610000– 0.613124

MaF10 1019 0.477226– 0.494561 1025 0.508591= 0.499967

MaF11 1071 1.144277= 1.138350 998 1.142115= 1.142032

MaF12 743 0.534650– 0.590140 761 0.535199– 0.592456

MaF13 1021 0.366427= 0.369516 1174 0.501206= 0.524403

Total (–/=/+) −→ 05/15/01 06/14/01 of 21 probs.

• MOEA/DD-UIP performs either statistically better than or equivalent to MOEA/DD in 20

out of 21 instances. In that MOEA/DD-UIP performs statistically better than and worse

than MOEA/DD in 6 and 1 instances, respectively.

Overall, it is fair to infer that both θ-DEA-UIP and MOEA/DD-UIP offer a better performance

in terms of hypervolume than their respective base variants, on convergence-hard multi-objective

problems.

5.6.1.2 Diversity-hard Problems

Table 5.8 reports the median hypervolume, from among 31 randomly seeded runs at the end of

tterm generations, for both θ-DEA-UIP and MOEA/DD-UIP. In that, tterm has been determined
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Table 5.8. Hypervolume based comparison of θ-DEA-UIP and MOEA/DD-UIP with their respect base

versions, on diversity-hard (CIBN, DASCMOP and MW) multi-objective problems. The termination gen-

eration (tterm) has been respectively determined on-the-fly for θ-DEA-UIP and MOEA/DD-UIP. The en-

tries are formatted as median indicator values from 31 runs followed by ‘–’, ‘=’ or ‘+’. –/=/+ inform that

the corresponding UIP variant performs statistically better, equivalent, or worse, respectively.

Problem tterm θ-DEA θ-DEA-UIP tterm MOEA/DD MOEA/DD-UIP

M
=

2

CIBN1 1367 0.335619– 0.508967 1325 0.334598– 0.488089

CIBN2 811 0.667394– 0.670158 766 0.668834– 0.669776

CIBN3 1013 0.213996– 0.226054 914 0.214547– 0.226791

DASCMOP1 1889 0.087565– 0.333138 1944 0.132878– 0.333529

DASCMOP2 1851 0.415182– 0.665041 1963 0.472963– 0.669614

DASCMOP3 1836 0.398531– 0.490193 1866 0.408387– 0.483395

DASCMOP4 2006 0.335362= 0.335602 2183 0.335677= 0.335719

DASCMOP5 2056 0.671229= 0.671456 2293 0.671290= 0.671308

DASCMOP6 2536 0.574568– 0.574870 2024 0.575065– 0.575155

MW1 1022 0.414481= 0.414556 1074 0.413709– 0.414596

MW2 833 0.482597– 0.489976 891 0.482312– 0.490426

MW3 1050 0.469747= 0.469479 971 0.469695= 0.469748

MW5 1632 0.100401– 0.200033 1453 0.195836= 0.200113

MW6 1212 0.297263= 0.310665 1272 0.296733= 0.309847

MW7 905 0.365294= 0.365050 890 0.365752= 0.366082

MW9 986 0.293277– 0.295686 1128 0.293964= 0.294019

MW10 1032 0.246414= 0.263056 1054 0.261012= 0.289881

MW11 987 0.265164= 0.208305 1087 0.265863= 0.254258

MW12 988 0.570107– 0.570289 1085 0.570166– 0.570444

MW13 990 0.322834– 0.336527 945 0.322475= 0.336561

M
=

3

CIBN4 505 0.895468– 0.908948 480 0.896755= 0.904669

CIBN5 299 0.619556= 0.619197 305 0.622079= 0.621514

DASCMOP7 1767 1.014610= 1.013342 1888 1.016219= 1.017115

DASCMOP8 1751 0.648435= 0.632479 1850 0.651319= 0.652080

DASCMOP9 1524 0.451661– 0.643800 1511 0.638729– 0.647575

MW4 756 1.024349= 1.026623 755 1.024167– 1.028343

MW8 732 0.609678= 0.616218 668 0.615115= 0.624471

MW14 894 0.156222= 0.156373 960 0.164248= 0.168807

Total (–/=/+) −→ 14/14/00 12/16/00 of 28 probs.

separately for θ-DEA-UIP and MOEA/DD, and the same has been used for their respective base

variants. From Table 5.8, following can be observed.

• θ-DEA-UIP performs either statistically better than or equivalent to θ-DEA in all 28 out of

28 instances. In that θ-DEA-UIP performs statistically better than θ-DEA in 14 instances,

respectively.
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• MOEA/DD-UIP performs either statistically better than or equivalent to MOEA/DD in all

28 out of 28 instances. In that MOEA/DD-UIP performs statistically better than MOEA/DD

in 12 instances, respectively.

Overall, it is fair to infer that both θ-DEA-UIP and MOEA/DD-UIP offer a better performance

in terms of hypervolume than their respective base variants, on diversity-hard multi-objective

problems.

5.6.2 Many-objective Problems

In this subsection, the performance of θ-DEA and MOEA/DD has been investigated on many-

objective test problems.

Table 5.9. Hypervolume based comparison of θ-DEA-UIP with θ-DEA on many-objective (DTLZ and

MaF) problems, with M = 5, 8 and 10. The termination generation (tterm) has been determined on-the-fly

for θ-DEA-UIP. The entries are formatted as median hypervolume values from 31 runs followed by ‘–’,

‘=’ or ‘+’. –/=/+ inform that θ-DEA-UIP performs statistically better than, equivalent to, or worse than the

underlying algorithm, respectively.

Problem
M = 5 M = 8 M = 10

tterm θ-DEA θ-DEA-UIP tterm θ-DEA θ-DEA-UIP tterm θ-DEA θ-DEA-UIP

DTLZ1 748 2.157168= 2.155684 875 9.981730= 9.979700 833 0.000000= 0.000000

DTLZ2 941 2.121202= 2.117514 905 9.763755+ 9.757405 877 17.591542= 17.592135

DTLZ3 765 2.082338= 2.012005 847 8.546232+ 7.622917 819 0.000000= 0.000000

DTLZ4 969 2.129442= 2.128684 857 9.731912+ 9.707987 763 17.219373= 17.165056

MaF1 844 0.056371= 0.056379 928 0.013510= 0.012873 773 0.001562– 0.001647

MaF2 366 0.988566– 0.995460 454 4.122041– 4.177972 521 7.475374– 7.613498

MaF3 1209 1.977794= 1.866041 612 0.000000= 0.000007 461 0.000000= 0.000000

MaF4 863 0.192197= 0.220878 963 0.032738= 0.045256 1222 0.026055– 0.034063

MaF5 1157 2.487719= 2.487765 1254 9.988717= 9.988717 1292 17.757727= 17.757727

MaF7 1090 0.956168= 0.955427 1022 4.222138– 4.262750 766 6.468072= 6.712384

MaF8 1767 0.000233– 0.000340 1429 0.000517– 0.000570 1317 0.000075= 0.000081

MaF9 2037 0.028336= 0.028005 849 0.000833= 0.001078 786 0.000014= 0.000042

MaF10 1049 0.830748– 0.877855 888 2.709276– 3.293281 962 5.286687– 5.609288

MaF11 1048 2.376759= 2.370576 1105 9.448397= 9.465672 1193 16.919760– 17.053469

MaF12 558 1.671026= 1.647667 431 6.450904= 6.438767 490 11.460954= 11.612789

MaF13 857 0.248616= 0.513728 966 0.269744= 0.297863 1211 0.160839– 0.213371

(–/=/+) −→ 03/13/00 04/09/03 06/10/00 of 16 probs.
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5.6.2.1 θ-DEA-UIP

Table 5.9 reports the median hypervolume values from among the 31 randomly seeded runs of

θ-DEA-UIP and θ-DEA, at the end of tterm generations. In that, tterm has been determined on-

the-fly for θ-DEA-UIP, and the same has been used for θ-DEA. From Table 5.9, following may

be observed.

• θ-DEA-UIP performs statistically better than θ-DEA in 13 out of 48 instances, spread over

M = 5, 8 and 10.

• θ-DEA-UIP performs statistically better than or equivalent to θ-DEA in 45 out of 48 in-

stances, spread over M = 5, 8 and 10.

From the above, it is fair to infer that θ-DEA-UIP offers an overall better performance than θ-

DEA on considered many-objective problems, ranging from 5 to 10 objectives.

5.6.2.2 MOEA/DD-UIP

Table 5.10 reports the median hypervolume values from among the 31 randomly seeded runs

of MOEA/DD-UIP and MOEA/DD, at the end of tterm generations. In that, tterm has been

determined on-the-fly for MOEA/DD-UIP, and the same has been used for MOEA/DD. From

Table 5.10, following may be observed.

• MOEA/DD-UIP performs statistically better than MOEA/DD in 14 out of 48 instances,

spread over M = 5, 8 and 10.

• MOEA/DD-UIP performs statistically better than or equivalent to MOEA/DD in 44 out of

48 instances, spread over M = 5, 8 and 10.

From the above, it is fair to infer that MOEA/DD-UIP offers an overall better performance than

MOEA/DD on considered many-objective problems, ranging from 5 to 10 objectives.

5.7 Run-time Analysis of the UIP Operator

For real-world problems, quite often, the time spent on solution evaluations constitutes a domi-

nant fraction of the overall run time for the optimization process. Moreover, these solution evalu-

ations are costly in terms of the resources (experimental or computational solvers, other than the

optimizer) needed for evaluation. Hence, any methodological intervention that could help ensure
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Table 5.10. Hypervolume based comparison of MOEA/DD-UIP with MOEA/DD on many-objective

(DTLZ and MaF) problems, with M = 5, 8 and 10. The termination generation (tterm) has been de-

termined on-the-fly for MOEA/DD-UIP. The entries are formatted as median hypervolume values from

31 runs followed by ‘–’, ‘=’ or ‘+’. –/=/+ inform that MOEA/DD-UIP performs statistically better than,

equivalent to, or worse than the underlying algorithm, respectively.

Problem
M = 5 M = 8 M = 10

tterm MOEA/DD MOEA/DD-UIP tterm MOEA/DD MOEA/DD-UIP tterm MOEA/DD MOEA/DD-UIP

DTLZ1 883 2.670244= 2.456018 853 6.960960+ 5.976893 808 16.139124+ 15.307207

DTLZ2 894 2.121843= 2.120594 839 9.758621= 9.755059 834 17.574223= 17.566918

DTLZ3 904 0.260120= 0.066750 803 8.319002= 8.116630 814 9.385090+ 6.920623

DTLZ4 960 2.133188= 2.130794 784 9.713384= 9.714599 754 17.296162= 17.248217

MaF1 856 0.055339= 0.056772 839 0.013111= 0.013142 757 0.001787– 0.001837

MaF2 376 0.981635= 0.984138 455 4.039789– 4.096927 535 7.321452– 7.494955

MaF3 1842 2.483576= 2.378006 1504 0.000000= 0.000045 568 0.000000= 0.000237

MaF4 820 0.154150= 0.168207 833 8.957987= 8.748836 975 0.015330= 0.019916

MaF5 1173 2.487694– 2.487737 1167 9.988716– 9.988717 1090 17.757727= 17.757726

MaF7 1126 0.968569+ 0.964265 959 4.291200= 4.295078 514 4.935445– 5.351254

MaF8 1853 0.000094– 0.000208 1508 0.000390= 0.000382 1438 0.000063= 0.000061

MaF9 1607 0.026104= 0.027067 745 0.000000= 0.000004 912 0.000022– 0.000071

MaF10 975 0.828694– 0.879025 931 2.599672– 3.326115 938 4.797117– 5.624205

MaF11 1020 2.361815= 2.364974 1073 9.368322= 9.367990 1149 16.694957– 16.906135

MaF12 505 1.637249= 1.622541 462 5.856193= 5.954883 496 10.449224= 10.762628

MaF13 944 0.409027– 0.515826 1132 0.621752= 1.007821 1164 1.268003– 1.918401

(–/=/+) −→ 04/11/01 03/12/01 07/07/02 of 16 probs.

a reasonably good PF -approximation in fewer solution evaluations could have immense utility.

However, it cannot be ignored that any such intervention may require both additional solution

evaluations and computational time, for the underlying methodology to come into effect. Hence,

the total number of solution evaluations (required collectively by the original optimizer and the

methodology), and the total time (required for original solution evaluations and methodology

implementation), need to be factored in. In this context, it is notable that for a desired or pre-

fixed quality of PF -approximation, any methodological intervention may pose two promising

scenarios vis-à-vis the base case (without any intervention), where:

• fewer total solution evaluations may be needed, and also the total run time may be lower,

and

• fewer total solution evaluations may be needed, but the total run time may be higher.
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In the context of UIP operator, the results discussed above testify its promise for fewer total

solution evaluations for a desired quality of PF -approximation. These include:

• the fact, that no new solution evaluations are required, and

• the fact, that when integrated with an RV-EMO algorithm, it promises a better or equivalent

PF -approximation than the stand-alone RV-EMO algorithm, at any given generation (as

in Figures 5.2 and 5.3a).

Critically, any specific generation of an RV-EMO-UIP run, where either or both of IP2 and

IP3 are invoked, will take more time than any generation of the base RV-EMO (without UIP),

which may be attributed to the construction of underlying training-dataset(s) and subsequently

time-consuming training of ML model(s). Hence, a better PF -approximation after a fixed num-

ber of generations (equivalently, after a fixed number of solution evaluations), as observed with

respect to Figures 5.2 and 5.3a, may not necessarily translate to a better PF -approximation in

lower total run time. This sets up the motivation for investigating the UIP operator with regard

to its associated run time. Towards that end, a sample analysis focusing on the performance of

NSGA-III and NSGA-III-UIP on the Z̃DT6 problem is presented here, assisted by the following

terminology. Let TSE denote the time, in seconds, required for one solution evaluation. Also, let

Tbase and TUIP denote the time, in minutes, required to complete one algorithmic run of NSGA-III

and NSGA-III-UIP, respectively, till tterm generations. Under the computational set-up employed

and experimental settings highlighted earlier, it turns out that TSE = 1.05e-04 (0.105 millisec-

onds), Tbase = 1.752, and TUIP = 4.829. Notably, ρ = TUIP/Tbase = 2.756, is significant,

as base NSGA-III may lead to a better PF -approximation than NSGA-III-UIP, if allowed more

generations with a run time equivalent of (TUIP − Tbase) minutes.

The above suggests the possibility that even though a pre-fixed quality of PF approximation

may be offered by NSGA-III-UIP in fewer generations or equivalently fewer solution evaluations,

than NSGA-III, it may still require higher overall run time. Figure 5.4a, which represents the

median run of Z̃DT6, testifies that the above possibility has indeed come true. Notably,

• the horizontal axis in Figure 5.4a represents the total run time (instead of the number of

generations, as in Figure 5.2a), since the current focus is to evaluate NSGA-III-UIP versus

NSGA-III, based on the total run time, and
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• the total time required by NSGA-III to complete tterm = 1836 generations in significantly

lower than the corresponding time required by NSGA-III-UIP.
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(a) TSE ≈ 0.0001, ρ = 2.756
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(b) TSE = 0.01, ρ = 1.095
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(c) TSE = 1.0, ρ = 1.001

Figure 5.4. Z̃DT6: Total run time analysis for NSGA-III versus NSGA-III-UIP. The black horizontal lines

mark a pre-fixed quality of PF -approximation to assess relative performance. Here ρ = TUIP/Tbase and

tterm = 1836.

The specific instance above could mistakenly lead to the inference that for a pre-fixed qual-

ity of PF -approximation, though NSGA-III-UIP may require fewer generations or equivalently

fewer solution evaluations, than NSGA-III, its total run time can never be comparable or lower

than that of NSGA-III. The basis for such a misconception has been countered below, through

variation in TSE. To symbolically emulate real-world scenarios where each solution evaluation

may take significantly larger time, two hypothetical values of TSE = 0.01 and TSE = 1.0 have

been considered. Though, in the case of Z̃DT6, actual TSE = 1.05e-04, the solution evaluations

have been inter-spaced by 0.1 and 10.0 seconds, respectively, (using the sleep function available

in the computational set-up used) to emulate the two scenarios. It may be noted that, as TSE
values rise from 1.05e-04, through 0.01, to 1.0 (seconds), the ρ values fall from 2.756, through

1.095, to 1.001. Interestingly, with TSE = 0.1 or 1.0, which could be quite common in real-

world problems, the time required for a complete algorithmic run of NSGA-III-UIP becomes

nearly comparable to that of NSGA-III. These instances also facilitate another insightful revela-

tion. For a pre-fixed quality of PF -approximation, represented by, say a hypervolume of 0.3, as

highlighted by horizontal lines in Figure 5.4:

• the solution evaluations required by NSGA-III-UIP are 45, 400 (independent of TSE val-

ues), while standalone NSGA-III requires 111, 200 solution evaluations,

• the total run time for NSGA-III-UIP is relatively higher than that of NSGA-III, if TSE =

1.05e-04, and
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• the total run time for NSGA-III-UIP is relatively lower than that of NSGA-III, if TSE = 0.1

or TSE = 1.0.

On the basis of the above investigation, it can be inferred that NSGA-III-UIP promises to offer

a pre-fixed quality of PF -approximation, in fewer generations or equivalently fewer solution

evaluations, than NSGA-III, while its total run time may be higher or lower than that of NSGA-III

depending on the time that each solution evaluation requires. Clearly, the utility of incorporating

the UIP operator may be far more significant in problems where each solution evaluation requires

significant time.



Chapter 6

Conclusion and Future Research Directions

In this chapter, the research work presented in this thesis is concluded in Section 6.1, followed

by a discussion on some potential future research directions in Section 6.2.

6.1 Conclusion

This thesis has proposed a generic and practicable ML-based framework to assist in the perfor-

mance enhancement of RV-EMO algorithms. This framework relies on invocations of one of

the three operators, including, IP2, IP3, and UIP, that learn from inter- and/or intra-generational

solutions, and utilize that learning for the creation of pro-convergence and/or pro-diversity off-

spring solutions. The degree to which these operators are utilized in a particular generation of an

RV-EMO algorithm, and the frequency with which these are invoked across the different gener-

ations, have been influenced by the overarching considerations of convergence-diversity balance

that is critical for the success of all EMO/RV-EMO algorithms; and also the risk-rewards tradeoff

associated with reliance on ML-based operators. Towards generality of the proposed framework,

adhoc decisions on critical aspects, including, when to initiate learning, and how frequently to

learn, have been avoided. Finally, considering the framework’s practicability, evaluation of any

additional solution, compared to the base RV-EMO algorithm (without ML assistance), has been

successfully avoided. The efficacy of this framework has been tested through its integration with

some RV-EMO algorithms, including NSGA-III, θ-DEA and MOEA/DD, on a wide range of test

problems with different characteristics, such as convergence-hardness, diversity-hardness, multi-

objectives, and many-objectives. In this thesis, while the first two chapters (Chapters 1–2) have

laid the foundational concepts, the remaining chapters (Chapters 3–5) have presented the core

contributions, which are concluded in the subsequent text.

Chapter 3 presents the IP2 operator for convergence-enhancement, and its associated frame-

115
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work for integration with NSGA-III, leading to NSGA-III-IP2. The IP2 operator is constituted by

three modules, including: training-dataset construction, ML training, and offspring’s advance-

ment. The first module maps the input-archive solutions to the target-archive solutions, along the

RVs in objective-space, and utilizes their underlying variable-vectors to construct the training-

dataset. The second module trains an ML model on the above dataset to learn the underlying

directional improvements in variable-space. The third module utilizes this trained model to ad-

vance a proportion P IP2 of the offspring (⌊P IP2N⌋ in number), originally created using natural

variation operators, potentially improving their convergence properties. Notably, the advanced

offspring replace the underlying offspring (that were advanced), ensuring that no additional so-

lution evaluations are required. Further, in any NSGA-III-IP2 run: (i) the first invocation of

the IP2 operator is guided by non-dominance of the population; and (ii) subsequent invocations

of the IP2 operator are guided by its performance, implying that such decisions have not been

made in an adhoc manner. The efficacy of IP2 operator has been established through a compar-

ison of NSGA-III and NSGA-III-IP2 on several convergence-hard MOPs, where NSGA-III-IP2

performed: (i) better in about 29% instances, and (ii) either better or equivalent in about 95% in-

stances, compared to NSGA-III. This further indicates that despite IP2 being a pro-convergence

operator, NSGA-III-IP2 could maintain the required convergence-diversity balance in majority

(about 95%) instances.

Chapter 4 presents the IP3 operator for diversity-enhancement, and its associated framework

for integration with NSGA-III, leading to NSGA-III-IP3. The IP3 operator is also constituted

by three modules, including: training-datasets construction, ML training, and offspring creation.

The first module maps the solutions associated with neighbouring RVs in objective-space, and

utilizes their underlying variable-vectors to construct M training-datasets, where each dataset

facilitates improvement in a particular objective. The second module trains M ML models (one

per dataset) to learn the search directions in variable-space, towards improvement in the cor-

responding objective. The third module creates ⌊P IP3N⌋ pro-diversity offspring using appro-

priately selected ML models (one per offspring). In that, half of the offspring (⌊P IP2N/2⌋) are

created for improvement in spread, and rest ⌊P IP2N/2⌋ for improvement in uniformity of solu-

tions. Notably, in generations where the IP3 operator is invoked, since ⌊P IP2N⌋ offspring are

already created using IP3, only the rest ⌈(1 − P IP2)N⌉ offspring are created using natural vari-

ation operators, ensuring that no additional solution evaluations are required. Further, in any

NSGA-III-IP3 run: (i) first invocation of the IP3 operator is guided by mild stabilization of the
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population; and (ii) subsequent invocations of the IP3 operator are guided by its performance,

implying that such decisions have not been made in an adhoc manner. The efficacy of IP3 op-

erator has been established through a comparison of NSGA-III and NSGA-III-IP3 on several

diversity-hard MOPs, where NSGA-III-IP3 performed: (i) better in about 46% instances, and

(ii) either better or equivalent in about 96% instances, compared to NSGA-III. This further indi-

cates that despite IP3 being a pro-diversity operator, NSGA-III-IP3 could maintain the required

convergence-diversity balance in about 96% instances.

Notably, in Chapters 3 and 4, P IP2 = P IP3 = 50% has been used. This choice has been

reasoned in Chapter 1, in the context of some key considerations, including the convergence-

diversity balance and the risk-rewards tradeoff. It has also been highlighted that any setting of

P IP2 > 50% or P IP3 > 50% may hamper the management of these considerations. The same

could also be observed empirically in the sample investigations presented at the end of Chapters 3

and 4 for the IP2 and IP3 operators, respectively.

Chapter 5 presents the UIP operator for convergence- and diversity-enhancement, and its

associated framework for integration with all three RV-EMO algorithms, leading to NSGA-III-

UIP, θ-DEA-UIP and MOEA/DD-UIP. The UIP operator relies on independent invocations of the

IP2 and IP3 operators for creation of both pro-convergence and pro-diversity offspring solutions.

In any generation of RV-EMO-UIP, either or both of IP2 and IP3 operators maybe invoked. In

any case, additional solution evaluations are not required, since each of IP2 and IP3 avoid these,

individually. Further, the same criteria for (initial and subsequent) invocations of IP2 and IP3

operators have been retained, as in Chapters 3 and 4, respectively. This endorses, that adhoc

decisions pertaining to invocations of UIP’s constituents were successfully avoided. The efficacy

of the UIP operator has been established: (i) with respect to IP2 and IP3 operators for NSGA-III,

and (ii) in general for NSGA-III, θ-DEA and MOEA/DD. Notably, NSGA-III-UIP performed

better than: (i) NSGA-III-IP2 in about 19% convergence-hard MOPs, and (ii) NSGA-III-IP3 in

about 21% diversity-hard MOPs. This endorses that use of pro-convergence and pro-diversity

offspring solutions simultaneously, regardless of the underlying convergence- or diversity-hard

problem characteristics, offers a better PF -approximation than possible otherwise. In general,

the UIP variants of the three RV-EMO algorithms collectively performed: (i) better in about 34%

instances, and (ii) either better or equivalent in about 95% instances, compared to their respective

base variants on multi- and many-objective problems.

Although RV-EMO-UIP offers a better or equivalent PF -approximation compared to the base
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RV-EMO algorithm, in the majority of test instances, it has been highlighted that the integration

of the UIP operator imposes additional run time complexity. In that, the invocations of IP2 and/or

IP3 operators may amount to a higher total run time of RV-EMO-UIP compared to the base RV-

EMO, to meet a particular level of PF -approximation, if the solution evaluations are very fast.

However, it has been established that the additional run time required to execute the invocations

of IP2 and IP3 operators would tend to be negligible in real-world problems, where each solution

evaluation may consume a significant amount of time. In a nutshell, the cited tradeoff between the

extra total run time required by the UIP operator and the savings in costly solution evaluations,

is likely to be in favour of the UIP operator in real-world problems.

A notable but unexplored aspect of the proposed operators is their ability to be integrated with

the EMO algorithms that do not utilize an RV-based architecture, such as the dominance-based

and indicator-based algorithms. In such cases, the proposed operators can still use a set of RVs to

facilitate the mapping of solutions, while the underlying EMO algorithm can run without them.

Even though this integration is theoretically feasible, the performance of these operators would

depend on several factors, such as: (a) the availability of solutions in the neighbourhood of RVs

for constructing the training-dataset(s), and (b) the probability of survival if a good offspring

is created at any given RV. It would be intriguing to explore the above, as an extension to the

proposed work.

As intended, this thesis has broadened the scope of online innovization by factoring both

convergence and diversity, without the need to specify the relationship structures, a priori, and

without incurring additional solution evaluations compared to the base RV-EMO algorithm. The

author believes that this thesis has only scratched the surface of what may turn out to be one of the

dominant research themes of ML-assisted evolutionary optimization. Some foreseeable research

directions have been highlighted below.

6.2 Potential Future Research Directions

At a structural level, the focus in this thesis pertains to the search phase of RV-EMO algorithms,

where solutions are iteratively evolved towards a good PF -approximation. Within this, the ML

interventions have been restricted to the offspring produced by the natural variation operators.

Clearly, even within the premise of RV-EMO algorithms, the utility of ML-based interventions

could also be explored with regard to the other phases, including, initialization of solutions;
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search phase with focus on selection operators; algorithm termination; and decision making. To-

wards a wider gamut of ML-assisted evolutionary optimization, similar interventions in the con-

text of EMO algorithms that do not rely on the use of reference vectors, may also be explored.

The utility of ML-based approaches could also be tested for wider real-world applications, par-

ticularly combinatorial optimization problems, where the curse of dimensionality is known to

pose a major challenge. Some preliminary ideas with regard to some of the above possibilities,

are highlighted below.

• ML-assisted Initialization: conventionally, EMO algorithms are initialized with a popula-

tion, constituted by a pre-defined number (N ) of solutions. These solutions are usually

created randomly or by utilizing some sampling methods such as Latin hypercube, in the

variable-space. Even though these N solutions may represent a diverse-set in the variable-

space, their representation in the objective-space remains unknown until they are evaluated.

Intuitively, it may be useful if the initial population offers a good diversity in the objective-

space, which may eventually lead to a better PF -approximation in fewer solution evalu-

ations. Towards this, an ML method may be utilized to sample the initial population in

such a manner that it also effects better initial diversity in the objective-space, eventually

facilitating a better PF -approximation.

• ML-assisted Termination: this thesis has utilized an earlier proposed stabilization tracking

algorithm [Saxena and Kapoor, 2019] to detect: (i) mild population stabilization, to time

the first invocation of IP3 operator, and (ii) strict population stabilization, to terminate an

RV-EMO-IP2/IP3/UIP run. Notably, this algorithm requires a set of two parameters that

govern the degree of stabilization to be detected. While these parameters could be intu-

itively set, it would be better to have a stabilization tracking algorithm that does not require

a priori fixation of parameters. Towards this, an ML method may be utilized to: (i) detect

the performance trend of the underlying EMO algorithm on-the-fly, through a performance

indicator; (ii) reliably predict the additional generations required by the population to sta-

bilize; and (iii) suggest an appropriate timing for an algorithm’s termination.

• ML-assisted Transfer Learning for Multi-criterion Decision Making: most EMO stud-

ies have focused on finding a set of Pareto-optimal solutions, and left the multi-criterion

decision-making (MCDM) task of picking a single preferred solution, to the decision maker

(DM). However, many existing MCDM methods can be combined with EMO algorithms,
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such that the DM’s preferences can influence selection, eventually leading to a single, pre-

ferred optimal solution at the end of an EMO run. ML methods could possibly assist in

transfer learning of DM’s preferences, to help avoid repeated DM’s intervention over the

same class of problems. For example, past practices of chosen solutions for similar prob-

lems can be learnt, to understand variable and objective combinations that were chosen.

Such a model can then be applied to pick the preferred solution from a fresh set of optimal

solutions.

• ML-assisted Combinatorial Optimization: combinatorial optimization problems are con-

sidered as one of the most challenging class of optimization problems, owing to the discrete

nature of variables, and large-dimensional search-space. This explains why the applications

of EMO algorithms on this class of problems, are rather sparse in literature. It would be

worth investigating if the innovized progress operators introduced in this thesis can be ex-

tended to such problems, and the degree to which the search efficacy of EMO algorithms

could be enhanced.

The author hopes that the innovized progress operators proposed in this thesis, the results pre-

sented, and some potent research directions cited, shall prompt more ML interventions towards

enhancing the efficacy and scope of applications of EMO algorithms.
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Coello Coello, C. A., González Brambila, S., Figueroa Gamboa, J., Castillo Tapia, M. G., and
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